

Pipes, Pressure, and a Precious Resource: The Engineering Challenge of Aging Water Infrastructure

MISSISSIPPI STATE UNIVERSITY™
MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Eric Williams Senior Project Manager

Eric.Williams@msstate.edu

www.wrri.msstate.edu

**MISSISSIPPI STATE
UNIVERSITY™**

**MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE**

MSU Water Resources Research Institute's Role

To provide a center of expertise in water and associated land-use problems and serve as a repository of knowledge for use in education, research, planning, and community service

To serve public and private interests in the conservation, development, and use of water resources

To provide training opportunities in higher education whereby skilled professionals become available to serve government and private sector alike

To assist planning and regulatory bodies at the local, state, regional, and federal levels

To communicate research findings to potential users in a form that encourages quick comprehension and direct application to a water-related problem

To assist state agencies in the development and maintenance of a state water management plan

MSU Water Resources Research Institute Technical Services

Comprehensive System Evaluations

Water Audits

Financial Rate Analysis

Cross Connection Control Program Assistance

Treatment Optimization

Compliance Consultation: GWR, RTCTR, LCR, etc...

Asset Management Assistance

Distribution System Optimization

Chemical Feed Dosage Optimization

Presentation Overview

MISSISSIPPI STATE
UNIVERSITY™

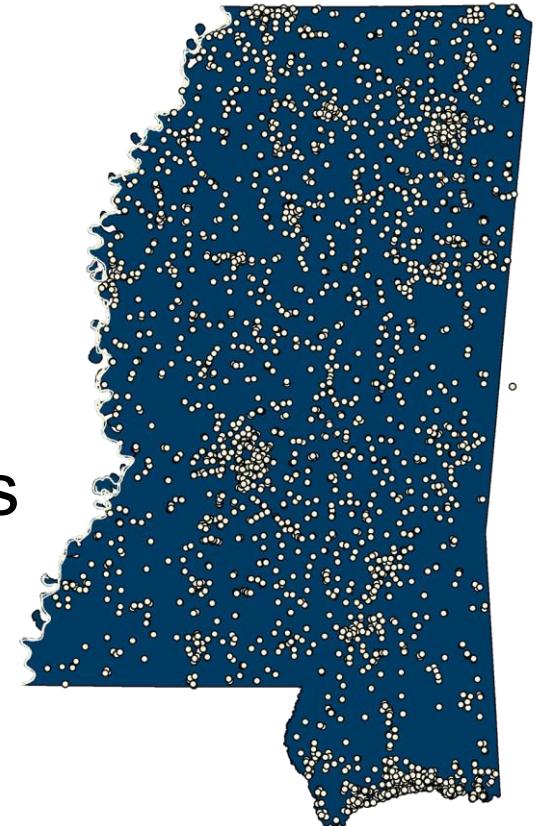
MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

 The State of Rural Water Systems and Municipalities in 2025

 Key Challenges Water Utilities Are Facing

 Exploring Viable and Economical Solutions

 The Role of Leadership


 Why Reinvestment Can't Wait

 Asset Management and Education

 Path Forward

Public Water Systems in 2025

- 1,200 public systems in Mississippi
- Majority rely on **groundwater**
- Classified by EPA as **Small or Very Small** systems
- Many established in the **1970s** through FHA loan programs

Public Water Systems in 2025

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Water quality and quantity can vary greatly across the state.

Treatment techniques can be labor intensive and have high capital cost.

Upgrade process requires lengthy timeline:

- Planning
- Design and Engineering
- Regulatory Review
- Construction
- Operation

Aging Infrastructure: A Growing Concern

Treatment plants and equipment far past design life.

Water well yields decreasing

Limited revenue restricts upgrades

Struggling to meet modern regulatory and operational demands

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Key Problems Associated with Aging Infrastructure

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Aging Water
Treatment Plants

Aging Pumping
Facilities

Water Quality
Degradation

Distribution
System
Deficiencies

Antiquated
Electrical
Components

Sanitary Defects
and
Contamination
Risks

Operational and
Customer
Impacts

Aging Water Infrastructure: Technical Challenges and Solutions

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Many water systems are operating beyond their intended design life.

Aging infrastructure poses risks to **water quality, system reliability, compliance, and public trust.**

Lead service line inventory and replacement requirements are bringing renewed attention to the broader issue of aging infrastructure.

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Infrastructure and Process Limitations

Treatment facilities designed
for:

Past water quality conditions
Lower regulatory standards
Smaller system demands

Aging structures, basins, and equipment increase failure risk.

Water Quality and Compliance Risks

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Reduced treatment reliability
can impact:

- Turbidity removal
- Fe/Mn Removal
- Disinfection effectiveness
- DBP control
- Optimization Control

Limited redundancy increases
vulnerability during:

- Equipment failures
- Maintenance activities
- System outages
- Chemical process downtime

Operational Challenges

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Obsolete equipment and controls limit:

Process optimization
Water Quality Monitoring
Data collection

Increased reliance on operator intervention increases operational risk. More room for errors.

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Mechanical and Electrical Deficiencies

Pumps and motors operating beyond expected service life.

Increased likelihood of:

Mechanical failures

Seal and bearing issues

Electrical and control system failures

Hydraulic and Pressure Impacts

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Inadequate pumping capacity or control can lead to:

Pressure fluctuations
Low-pressure events
System-wide impacts during peak demand or outages

Overloading a system can lead to:

Excessive friction loss
Loss of consumer confidence

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Hydraulic and Design Limitations

Dead-end mains and unlooped lines lead to:

Stagnation
Poor water quality
Increased flushing and maintenance costs

Aging pipes increase leakage and break frequency.

Water Quality and Contamination Risks

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Pressure losses
increase the risk of:

- Contamination intrusion
- Backflow events

Aging pump stations
may lack:

- Modern controls
- Backup power
- Alarm and monitoring capabilities

Water Quality Degradation

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Water Age Management Challenges

Increased water age contributes to:

Disinfection Byproducts
(DBPs)

Loss of disinfectant
residual

Free chlorine carrying
deep into the distribution
system

Aging tanks and poorly mixed storage
facilities worsen water age issues.

Operational Control Limitations

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Insufficient valving limits the
ability to isolate:

Problem areas
Repair zones
Contamination events

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Sanitary Defects and Contamination Risks

Sanitary defects and significant deficiencies

Pathways for contamination through backflow events

Vulnerabilities at treatment facilities and source water connections

Why Reinvestment Can't Wait

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Component	System Area	Life Expectancy
Water Wells	Source	25 years
Intake Structures	Source	35 years
Pumping Equipment	Source	10 years
Disinfection Equipment	Treatment	5 years
Tanks (Hydro/Concrete/Metal)	Storage	10 – 30 years
Piping & Valves	Distribution	35 years
Controls & Software	Electrical	5 – 20 years

* Source: EPA: "Taking Stock of Your Water System: A Simple Asset Inventory for Very Small Drinking Water Systems"

Operational and Customer Impacts

Boil water notices

Emergency shutdowns

Service disruptions

Compliance-related violations

Poor customer communication can erode public confidence during events.

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Consequences of Inaction

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

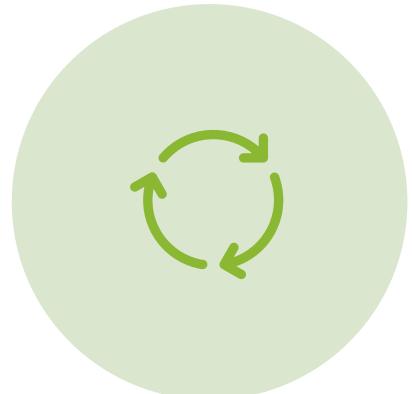
Solutions to Address Aging Infrastructure

Infrastructure Improvements

Water Quality and Compliance Strategies

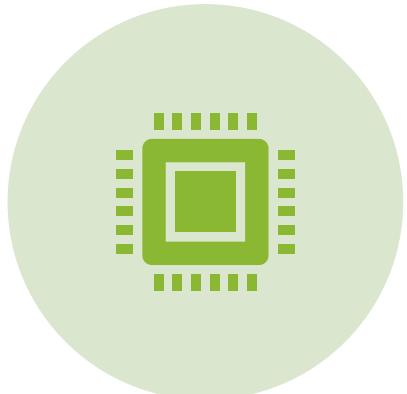
Planning, Prioritization, and Funding

Workforce and Knowledge Transfer


Customer and Stakeholder Engagement

Treatment Plant Upgrades

MISSISSIPPI STATE
UNIVERSITY™


MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

MODERNIZE TREATMENT
PROCESSES TO MEET CURRENT
AND FUTURE REGULATIONS.

ADD REDUNDANCY FOR
CRITICAL TREATMENT
COMPONENTS.

UPGRADE MONITORING,
CONTROLS, AND AUTOMATION
SYSTEMS.

Pumping Facility Improvements

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Replace aging pumps and motors with energy-efficient units.

Improve pressure management and system reliability.

Add:

Backup power
SCADA and alarm systems
Redundancy for critical pumping facilities

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Storage and Distribution Improvements

Loop distribution lines and eliminate dead ends.

Add strategically placed valves to:

Improve isolation capabilities
Reduce service interruptions

Upgrade storage tanks and install tank mixers to:

Improve water quality
Reduce water age

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Coordinated Infrastructure Upgrades

Coordinate water infrastructure upgrades with:

Roads
Sewer
Broadband

Reduces costs, construction impacts, and public disruption.

“Dig Once” Policy

Water Quality and Compliance Strategies

Implement proactive water age management programs.

Address DBP formation through:

System design improvements
Operational optimization

Prepare for and educate systems on upcoming regulatory requirements.

Other Paths Forward

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Invest in **efficient**
treatment technologies

Well Motor VFDs
Smart Metering
Technologies
Continuous Chemical
Monitoring

Upgrade **electrical components**

Distribution System
Upgrades

Line Looping
Fire Flow
Hydraulic Modeling

Implement **automated**
metering

Automated Master Meters
Automated Residential
and Commercial Meters

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Planning, Prioritization, and Funding

Help

- Assess treatment, pumping, storage, and distribution assets
- Identify critical needs
- Prioritize projects based on risk and consequence of failure

Explore

Explore partnerships and consolidation opportunities to:

- Improve resiliency
- Share resources
- Reduce long-term costs

Increase

Increase outreach to identify and pursue funding opportunities, including:

- Grants
- Low-interest loans

Workforce and Knowledge Transfer

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

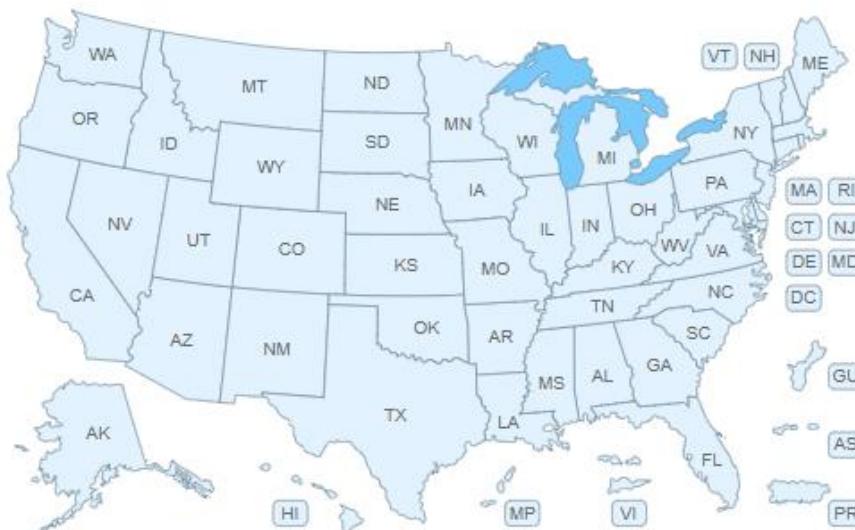
Address the aging workforce by:

Creating avenues for knowledge transfer from experienced staff

Supporting training and mentorship for the next generation of operators

Standardize operating procedures and documentation.

Funding Opportunities



MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Funding Sources By State Or Territory

We work with state and federal agencies to make sure that current funding opportunities are consolidated in one place. Click the map below to find water and wastewater infrastructure funding sources for your state or territory.

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Funding Opportunities

Mississippi Water and Wastewater Funding Sources Compiled by the Environmental Finance Center Network, Fall 2024

Organization	Program (key words)	Gov. Entity	Non- Profit	For- Profit	Purpose or Use of Funds	How to Apply	Website	Contact
Mississippi State Department of Health (MSDH)	State Drinking Water Revolving Loan Fund (water)	✓			The DWSRF assists public water systems to finance the costs of infrastructure needed to achieve or maintain compliance with Safe Drinking Water Act (SDWA) requirements and to protect public health objectives of the Act. A new emphasis is on preventing contamination problems through source water protection and enhanced water systems management.	Application forms and a detailed list of required items can be accessed on the MSDH website. Prior to submitting a Loan Application Form, projects will be ranked on the Intended Use Plan Priority List. Deadlines vary for each program.	https://msdh.ms.gov/ msdhsite/_static/44.0127.html	Jonathan Chaney jonathan.chaney@msdh.ms.gov -or- Drinking Water SRF Coordinator Division of Water Supply Mississippi State Department of Health P. O. Box 1700 Suite U-234 570 East Woodrow Wilson Boulevard Jackson, MS 39215-1700 (601) 576-7518 Telephone (601) 576-7800 FAX
	Emergency Loan Program (water)	✓			Provides emergency loans to counties, municipalities, districts, or other water organizations that are tax exempt, for the repair, replacement, or construction of drinking water projects. There is no set maximum loan limit for an emergency loan.	Application forms and a detailed list of required items can be accessed on the MSDH website. Prior to submitting a Loan Application Form, projects will be ranked on the Intended Use Plan Priority List. Deadlines vary for each program.	https://msdh.ms.gov/ msdhsite/_static/44.0127.html#Emergency	Jonathan Chaney jonathan.chaney@msdh.ms.gov -or- Drinking Water SRF Coordinator Division of Water Supply Mississippi State Department of Health P. O. Box 1700 Suite U-234 570 East Woodrow Wilson Boulevard Jackson, MS 39215-1700 (601) 576-7518 Telephone (601) 576-7800 FAX
	Water Infrastructure Improvements for The Nation Act - Small and Disadvantaged Communities Drinking Water Grant (water)	✓			Grants for small and/or disadvantaged public water system, with a 45% Cost Share Provided by Subgrantee, for plan and design, construction, expansion or repair, or the consolidation of water systems.	Application forms and a detailed list of required items can be accessed on the MSDH website. Prior to an Award, applications will be evaluated by program staff to assess the projects that serve the greatest need. Application deadline is April 30th of each calendar year that funding is available to the agency.	https://www.healthymiss.com/ msdhsite/_static/44%20%2c127.html	

Education: Building Capacity for the Future

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

- Continuous training for staff and leadership
- Stay current with **regulations and technologies**
- Foster a **culture of professional development**

The Role of Leadership

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

 Visionary boards drive success

 Manage as a business

 Need for **proactive planning** and **system evaluations**

 Growth forecasting

 Gradual upgrades

 Regular optimization reviews

 Rate adjustments tied to needs

Customer and Stakeholder Engagement

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Strengthen customer communication before, during, and after infrastructure projects.

Clearly explain:

Why upgrades are needed

How customers benefit

What to expect during construction or service disruptions

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

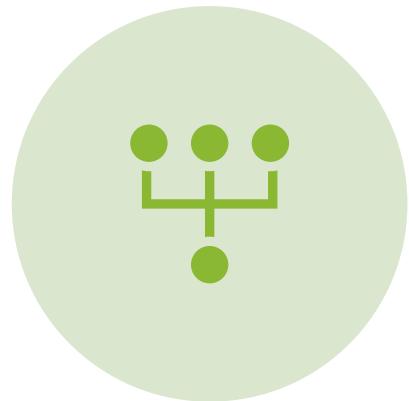
The Role of Collaboration

Partnerships are critical for:

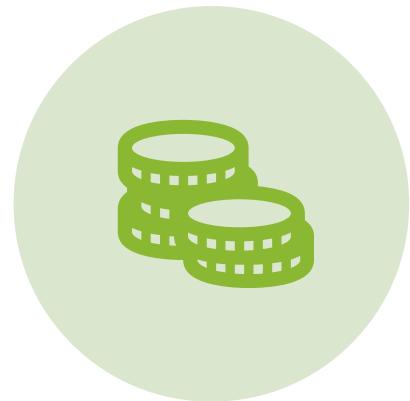
- Project financing
- Technical assistance
- Regulatory navigation

Consolidation and regional cooperation can enhance:

- Operational efficiency
- Compliance stability
- Long-term system sustainability


Consolidation and Strategic Investment

MISSISSIPPI STATE
UNIVERSITY™


MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

CONSOLIDATION: COMBINE
SMALL SYSTEMS TO SHARE
RESOURCES

EXPANDS CUSTOMER BASE AND
REVENUE

LOWERS PER-UNIT COST OF
OPERATIONS

Investing in the Future

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

Reinvest now to ensure long-term viability

Combine smart planning + technology + leadership

Ensure **safe, reliable water** for future generations

Asset Management: The Foundation of Sustainability

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE

1

MAINTAIN
INVENTORY OF
ALL ASSETS

2

TRACK
CONDITION,
AGE, AND LIFE
EXPECTANCY

3

PLAN FOR
TIMELY
REPLACEMENT

4

ENSURE
EFFICIENT,
RELIABLE
OPERATION

Conclusion: Building Resilient Systems for the Future

- Aging infrastructure is a challenge—but also an opportunity.
- Strategic investments in treatment, pumping, storage, and distribution systems:
 - Protect public health
 - Improve compliance
 - Reduce service disruptions
 - Build resilient water systems for future generations

Questions and Discussion

MISSISSIPPI STATE
UNIVERSITY™

MISSISSIPPI WATER RESOURCES
RESEARCH INSTITUTE