






# **Basic Drinking Water Math for Operators**

Thursday, Nov 13, 2025 | 1:00 - 2:00 PM EST

Instructor: Daryl Gotham PE



# Certificate of Completion

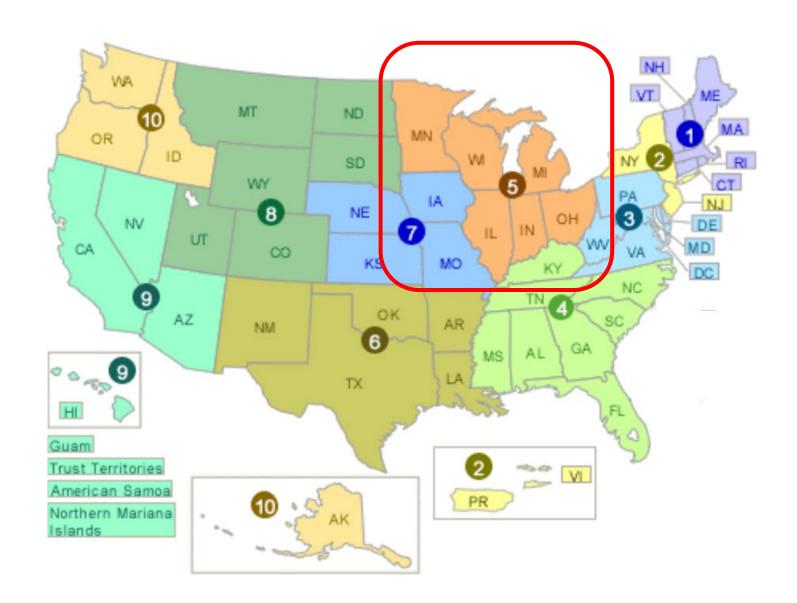
This session has **NOT** been submitted for pre-approval of Continuing Education Credits, but eligible attendees will receive a certificate of attendance for their personal record.

### To receive a certificate:

- You must attend the entire session
- You must register and attend using your real name and unique email address group viewing credit will not be acceptable
- You must participate in all polling questions
- Certificates will be sent via email within 30 days

If you have questions or need assistance, please contact smallsystems@syr.edu.




# **About Us**

The **Environmental Finance Center Network (EFCN)** is a university- and non-profit-based organization creating innovative solutions to the difficult how-to-pay issues of environmental protection and water infrastructure.

The EFCN works collectively and as individual centers to address these issues across the entire U.S, including the 5 territories and the Navajo Nation. The EFCN aims to assist public and private sectors through training, direct professional assistance, production of durable resources, and innovative policy ideas.



# Nationwide reach of EFC Network







Serve small communities (population of less than 10,000) throughout EPA Region 5: Indiana, Illinois, Michigan, Minnesota, Ohio, Wisconsin, and 35 federally recognized American Indian governments.

**Training, Research, and Technical Assistance** with a mission to help water and wastewater utilities increase technical, managerial, and financial capacity (TMF).

### **Contact Information**

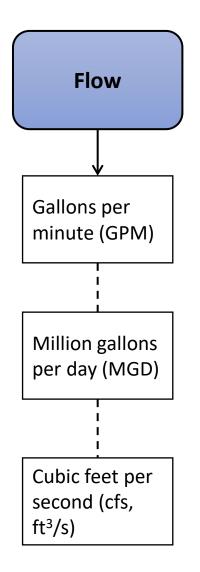
gleic-support@mtu.edu

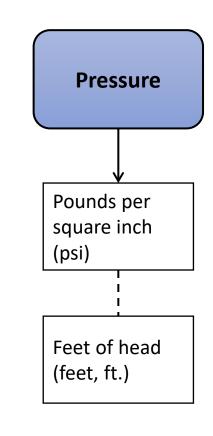
(906) 487-2102.

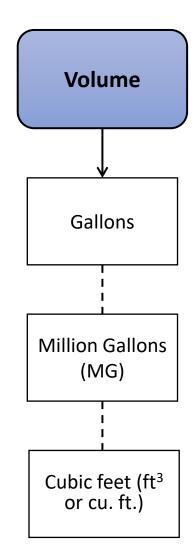
Web: https://gleic.org/

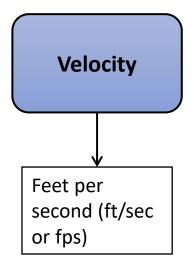






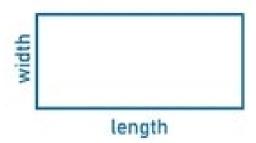


# = an


# Basic Drinking Water Math


- Calculating Areas and Volumes
- Conversions
- Flow Rates
- Pressure
- Pounds Formula and Feed rates

# Units of Measure

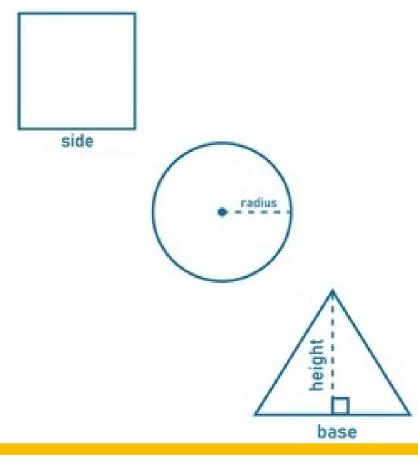








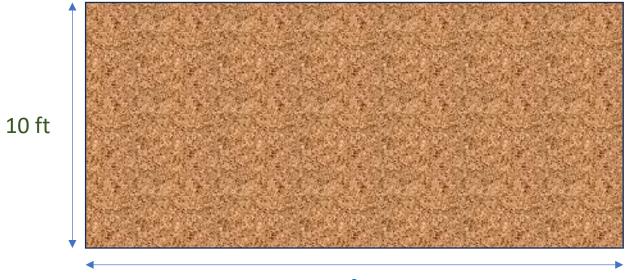

# Areas used in pipe and tank calculations


• Rectangle: A = L x W



• Square:  $A = L^2$ 

• Circle:  $A = \pi x r^2 = 0.785 x d^2$ 


• Triangle:  $A = \frac{1}{2}xbxh$ 



# Rectangular Area

Rectangular area is used for filtration and sedimentation calculations.

A rapid sand filter has a width of 10 feet and a length of 20 feet. What is the area of the filter in square feet (ft<sup>2</sup>)?



Area = Length x Width

20ft x 10ft = 200 ft<sup>2</sup>

# Circular area

Circular area is used for filtration and sedimentation calculations and flow rates in pipes.

A circular sedimentation basin has a diameter of 60 feet. Determine the surface area in square feet (ft<sup>2</sup>).

Area = 
$$\pi r^2$$

Area = 
$$3.14 \times 30$$
ft x  $30$ ft =  $2,826$  ft<sup>2</sup>

Area = 
$$0.785 \times D^2$$

Area = 
$$0.785 \times 60 \text{ft} \times 60 \text{ft} = 2,826 \text{ ft}^2$$

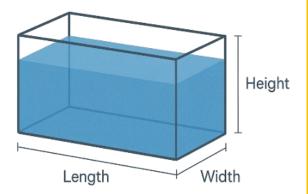
### 0.785 is one quarter of Pi

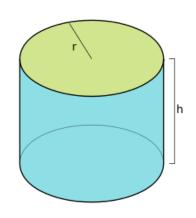
$$\pi r^2 = 3.14 \times D/2 \times D/2 = 3.14 \times \frac{1}{4} \times D^2 = 0.785 \times D^2$$

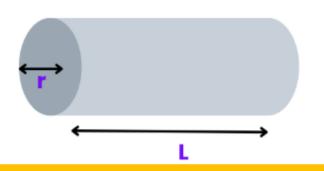
# Volumes used in tank/pipe calculations

**Rectangular Tank:** V = L x W x H

Cylindrical Tank:  $V = \pi x r^2 x h$  or  $V = 0.785 x d^2 x h$ 


**Cylindrical Pipe:**  $V = \pi x r^2 x l$  or  $V = 0.785 x d^2 x l$ 

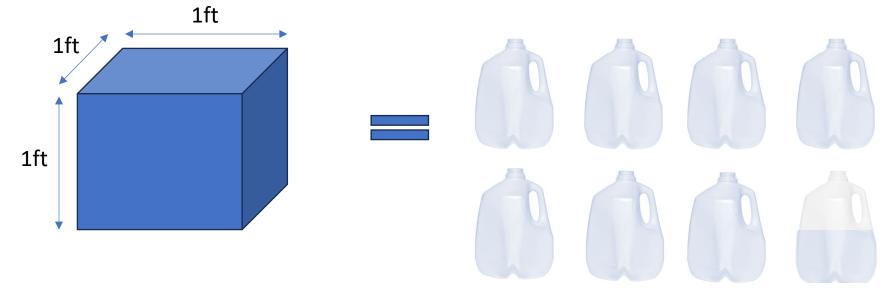

Lesser used volumes:


Cone:  $V = 1/3 (\pi r^2 h)$ 

Pyramid:  $V = L \times W \times (1/3)H$ 

Sphere:  $V = 4/3 (\pi r^3)$ 








# Volume conversion from cubic foot to gallons

Rectangular volume is L x W x H

1 cubic foot = 7.48 gallons



How many gallons can a 24 cubic foot tank hold?

 $24 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3 = 179.5 \text{ gallons}$ 

Note: The ft<sup>3</sup> units cancel

# Rectangular Volume

Volume = L x W x H

A rectangular sedimentation basin has a depth of 10 feet, a length of 50 feet and a width of 20 feet. Determine the volume in cubic feet and in gallons.



Volume = 50ft x 20ft x 10ft = 10,000 ft<sup>3</sup>

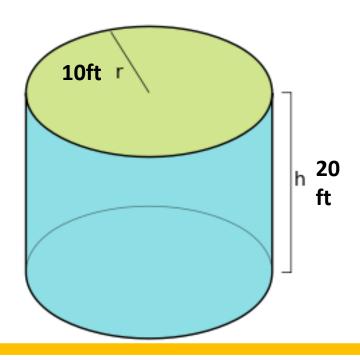
 $10,000 \text{ ft}^3 \times 7.48 \text{ gal/ft}^3 = 74,800 \text{ gallons}$ 

# Cylindrical Volume

A cylindrical tank has a radius of 10 ft and a height of 20 ft. How many gallons can it hold?

### Formula:

Volume = 0.785 x Diameter x Diameter x Height


$$V = 0.785 \times D^2 \times H \text{ or } V = \pi \times r^2 \times H$$

We first determine the volume of the tank in cubic feet:

$$V = \pi x (10 \text{ feet})^2 x 20 \text{ feet} = 6,283 \text{ ft}^3$$

Next, we convert from cubic feet to gallons:

$$6,283 \text{ ft}^3 \times 7.48 \text{ gallon/ft}^3 = 47,000 \text{ gallons}$$

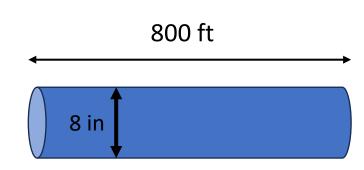


# Poll 1

A new, 800-foot section of 8-inch diameter watermain was recently installed. The watermain needs to be filled for testing. How many gallons of water will be required to fill the watermain?

- a. 300,636 gallons
- b. 2,351 gallons
- c. 2,109 gallons
- d. 10,569 gallons

# Poll 1 Solution


A new, 800-foot section of 8-inch diameter watermain was recently installed. The watermain needs to be filled for testing. How many gallons of water will be required to fill the watermain?

0.785 x Diam x Diam x Length x 7.48 gal/ft<sup>3</sup>

(Diameter = 
$$8 \text{ in } \times 1 \text{ ft/} 12 \text{ in } = 0.67 \text{ ft}$$
)

 $0.785 \times 0.67 \text{ft} \times 0.67 \text{ft} \times 800 \text{ft} \times 7.48 \text{ gal/ ft}^3$ 

= 2,109 gallons (Answer C)



# **Conversion Table**

| <u>Multiply</u>             | <u>By</u> | <u>To Obtain</u>         |
|-----------------------------|-----------|--------------------------|
| Cubic Feet (ft³ or cu. ft.) | 7.48      | Gallons of Water (gal)   |
| Cubic Feet (ft³ or cu. ft.) | 62.4      | Pounds (lbs) of Water    |
| Gallons of Water (gal)      | 8.34      | Pounds (lbs) of Water    |
| Feet of Water (ft)          | 0.433     | Pounds/Square Inch (psi) |
| Pounds/Square Inch (psi)    | 2.31      | Feet of Water (ft)       |
|                             |           |                          |

# **Conversion Example**

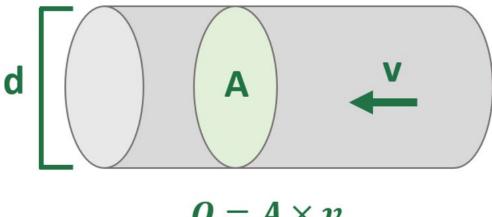
We have 16,456 gallons of water that needs to be transferred to a basin. What is the minimum number of cubic feet that the basin must be in order to adequately hold this much water? How much would the water weigh, in pounds?

Convert gallons to cubic feet.

Do we use 7.48 gallons/1 cubic foot or 1 cubic foot/7.48 gallons?

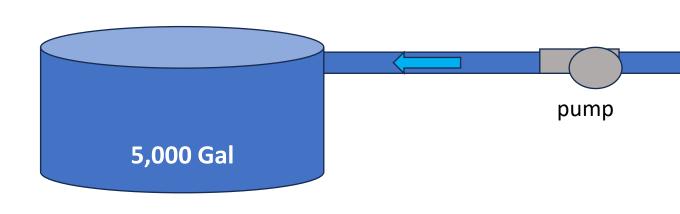
16,456 gallons x 1 cubic foot/7.48 gallons = 2,200 cubic feet

Convert cubic feet to pounds.


2,200 cubic feet x 62.4 pounds/1 cubic foot = 137,280 pounds

# Rate of Flow

An indication of how much water (a volume) is moving past a spot in a unit of time.


Flow rates are typically referred to as discharge (Q) and expressed in volumes per units of time.

Gallons per minute (gpm)
Millions of Gallons per day (MGD)
Cubic feet per second (cfs)



# Flow rate (GPM)

<u>Gallons</u> = GPM Minutes

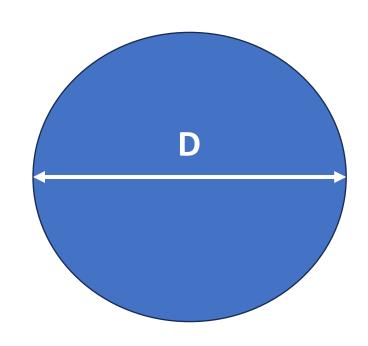


A pump fills a 5,000-gallon tank in 12 minutes. What is the pump output in GPM?

5,000 gallons = 416.7 GPM 12 minutes

If this same pump ran for a full day, how much water would it pump?  $416.7 \text{ gal/min} \times 60 \text{ min/hour} \times 24 \text{ hrs/day} = 600,048 \text{ gallons/day}$ 

Minutes in a day: 24 hours/day x 60 minutes/hour = 1,440 min/day


# Flow: $Q = A \times V$

Flow (Q) = Area x velocity

### **Units**

- Flow = ft<sup>3</sup>/sec (or cfs)
- Area =  $ft^2$
- Velocity = ft/sec

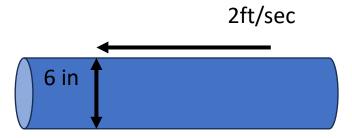
Cross-sectional area of pipe flow is circular



$$Q = A \times V$$

Water is moving through a six-inch pipe at a velocity of 2 feet per second. What is the flow in cfs?




 $6 \text{ in } \times 1 \text{ ft}/12 \text{ in } = 0.5 \text{ ft}$ 

**Step 2: Calculate Area** 

Area =  $0.785 \times 0.5 \text{ft} \times 0.5 \text{ ft} = 0.19625 \text{ ft}^2$ 

Step 3: Use the flow formula (Area x velocity)

 $Q = 0.19625 \text{ ft}^2 \times 2 \text{ ft/sec} = 0.3925 \text{ ft}^3/\text{sec} \text{ (or cfs)}$ 



## Flow rate conversions between CFS and GPM

CFS to GPM:  $cf/sec \times 60 sec/1 min \times 7.48 gal/cf = GPM$ 

**GPM to CFS:**  $gal/min \times 1min/60 \sec \times 1 \operatorname{cf}/7.48 gal = CFS$ 

A pipe has a flow of 0.5 cubic feet per second. What is this flow in GPM?

 $0.5 \text{ ft}^3/\text{sec} \times 60 \text{ sec/min} \times 7.48 \text{ gal/ft}^3 = 224.4 \text{ GPM}$ 

A pipe has a flow of 500 gpm. What is this flow in CFS?

500 gal/min x 1min/60 sec x 1 ft $^3$ /7.48 gal = 1.11 CFS

# Solving for velocity in $Q = A \times V$

$$Q = A \times V$$

Divide both sides by A

$$\frac{Q}{A} = \frac{A \times V}{A}$$

Area cancels out on the right side of the formula

Velocity = 
$$\frac{\text{Flow }(Q)}{\text{Area}}$$

A pipe with a cross-sectional area of 0.23 ft<sup>2</sup> has a flow of 0.75 cubic feet per second. What is the velocity in the pipe?

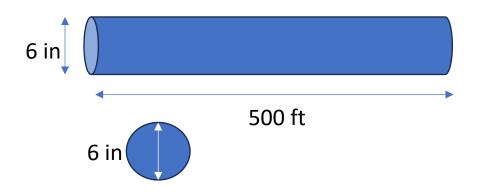
$$V = 0.75 \text{ ft}^3/\text{sec} = 3.26 \text{ ft/sec}$$
  
 $0.23 \text{ft}^2$ 

# Flow velocity with conversion

A pipe has a diameter of 18 inches and has a flow of 800 gallons per minute. What is the velocity of flow in the pipe?

Step 1: Convert inches to feet, 18in x 1ft/12in = 1.5 feet

<u>Step 2</u>: Area =  $0.785 \times 1.5 \text{ft} \times 1.5 \text{ft} = 1.766 \text{ ft}^2$ 


Step 3:  $Q = 800 \text{ gal/min } \times 1 \text{ min/}60 \text{ sec } \times 1 \text{ ft}^3/7.48 \text{ gal} = 1.783 \text{ ft}^3/\text{sec}$ 

Step 4:  $V = Q = 1.783 \text{ ft}^3/\text{sec} = 1.010 \text{ ft/second}$ A 1.766 ft<sup>2</sup>

### Poll 2

# What flow in GPM is needed to flush a 500-foot section of 6-inch water main at a velocity of 5 feet per second?

- a. 733.9 GPM
- b. 440.4 GPM
- c. 98.1 GPM
- d. 23.4 GPM



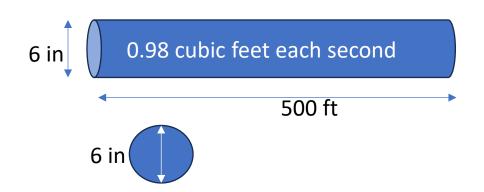
### Poll 2 solution

# What flow in GPM is needed to flush a 500-foot section of 6-inch water main at a velocity of 5 feet per second?

### Flow necessary to attain 5ft/sec velocity

We will use Area ( $ft^2$ ) x velocity (ft/sec) = flow ( $ft^3/sec$ )

### Step 1


Pipe area =  $0.785 \times \text{Diam} \times \text{Diam} \times 0.785 \times 0.5 \text{ft} \times 0.5 \text{ft} = 0.19625 \text{ ft}^2$ 

Step 2 
$$Q = A \times V$$

 $Q = 0.19625 \text{ ft}^2 \times 5 \text{ ft/sec} = 0.98125 \text{ ft}^3/\text{sec}$ 

### Step 3 Convert cfs to gpm

 $0.98125 \text{ ft}^3/\text{sec} \times 60 \text{ sec/min} \times 7.48 \text{ gal/ft}^3 = 440.4 \text{ gpm, (B)}$ 



# Pressure

Force water exerts over a unit area

• Expressed in terms of pounds per square inch (psi) or per square foot

Force

• Water weighs  $8.34lbs/gal \times 7.48 gal/ft^3 = 62.4 lbs/ ft^3$ 

### **Example psi Conversion**

1 sq ft = 12 in. x 12 in. = 144 sq in 
$$\frac{62.4 \text{ lbs}}{\text{ft}^2} \times \frac{1 \text{ft}^2}{144 \text{ in}^2} = \textbf{0.433 psi for 1 ft of water}$$

$$1 \text{ ft} = 0.433 \text{ psi}$$
,  $1 \text{ psi} = 1 \text{ foot}/0.433 = 2.31 \text{ feet}$ 

# Pressure Example - Ground Storage Tank

### **Example**

A 10 ft wide by 20 ft long by 6 ft deep tank will hold 8967 gallons of water when full. The water weighs 74,850 lbs (8.34 lb/gal x 8976 gal) and acts on the 10 ft by 20 ft bottom of the tank. What is the pressure in psi on the bottom of the tank?

1.) Calculate pressure in lbs/ft<sup>2</sup>

$$6 \text{ ft x } 62.4 \frac{\text{lbs}}{\text{ft}^3} = 375 \frac{\text{lbs}}{\text{ft}^2}$$

6 ft 20 ft

2.)Convert to psi

Since  $1 \text{ ft}^2 = 12 \text{ in.} \times 12 \text{ in.} = 144 \text{ in}^2$ , the pressure in psi will be:

$$\frac{375 \text{ lbs}}{\text{ft}^2} \times \frac{1 \text{ft}^2}{144 \text{ in}^2} = 2.6 \frac{\text{lbs}}{\text{in}^2} = 2.6 \text{ psi}$$

# Pressure as Cubes of Water

Pressure calculations can be thought of a "cubes" of water stacked one on top of the other.

Each cube weighs 62.4 lbs and exerts pressure on a one square foot area.

With a water height of 6 feet, the pressure is:

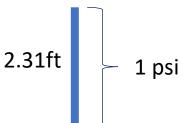
 $6 \text{ ft x } 62.4 \text{ lbs/ft}^3 = 375 \text{ lbs/ft}^2$ 

Since  $1ft^2 = 12$  in x 12 in or 144 in<sup>2</sup> the pressure in lbs/in<sup>2</sup> is:

375 lbs  $/ft^2$  x 1  $ft^2/144$  in<sup>2</sup> = 2.6 psi for 6 feet of water

# Water Head relationships

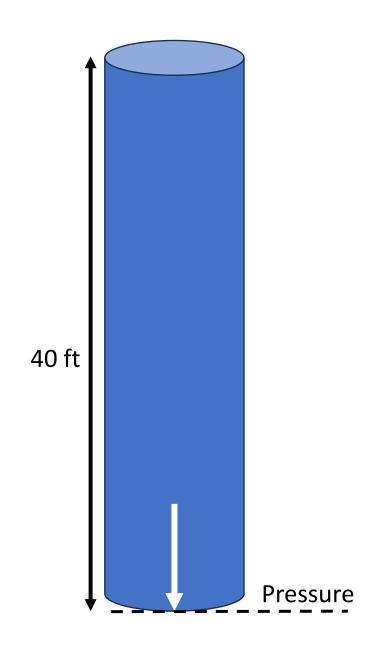
Converting the pressure of our 62.4 pound cube of water from the pressure on one square foot to the pressure per square inch:


62.4 lbs/ft<sup>2</sup> x 1 ft<sup>2</sup>/144 in<sup>2</sup> = 0.433 lb/ in<sup>2</sup> = 0.433 psi for one foot  $H_2O$ 

0.433 psi = 1 ft of water head

 $\frac{1}{0.433}$  = 2.31 ft of water head, 1 psi = 2.31 ft

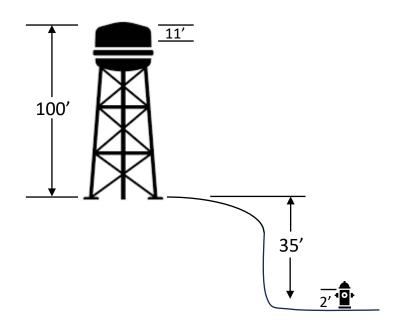
### Pressure


Pressure (pounds per square inch or PSI) = <u>Height</u>



2.31 ft/psi
Every 2.31 foot of water column
height adds 1 psi of static pressure

# What is the pressure at the bottom of a standpipe filled to the 40 ft level?


$$P = 40 \text{ ft x } 1 \text{psi} / 2.31 \text{ft} = 17.3 \text{ psi}$$



# Pressure Example – Elevated Storage Tank

### **Problem Statement**

A 100ft high elevated tank sits atop a 35ft high hill. The water level in the tank is 11ft below the tank's top. There is a hydrant at the base of the hill. What is the water pressure at the hydrant nozzle if the nozzle is 2ft above ground level? (Assume static conditions—no flow or head loss)



1.) Calculate feet of head

2.) Calculate pressure in psi

122ft x 
$$\frac{0.433 \text{ psi}}{1 \text{ ft}}$$
 = **52.8 psi**

OR

122ft x  $\frac{1 \text{ psi}}{2.31 \text{ ft}}$  = **52.8 psi**

# Concentration

### Parts per Million (ppm)

Ppm = 1 part / 1,000,000 parts

### Milligrams per Liter (mg/L)

Technically, the weight of solids (expressed in mg), that are in a 1-Liter sample. It's weight per volume, however because a liter of water weighs 1,000,000 mg. We use it as ppm concentration.

### Percent (%)

Expresses how many parts per hundred parts. 1/100 is expressed as 1% 10,000 mg/L = 1%

**Decimal equivalent of percent**: 1/100 is expressed as 0.01

# Calculating feed rates

- Dry chemical feed (pounds per day)
- Liquid chemical feed (gallons per day)
- Conversions for chemical strength (if not 100%)

We use the pounds formula

Flow (MGD) x dosage (mg/L) x 8.34 lbs/gal = pounds per day

For a liquid chemical we divide by the weight of chemical in each gallon

# Pounds formula

Flow (MGD) x Conc (mg/L) x 8.34 lbs/gal = Feed rate in Lbs/Day

A well produces a flow of 600 gpm and the chlorine dose is 1.5 mg/L. What is the feed rate for gas chlorine in pounds per day?

Step 1: Convert flow to MGD
600 gal/min x 1440 min/day = 0.864 MGD
1,000,000 gal/MG

Step 2: Use pounds formula  $0.864 \text{ MG/day } \times 1.5 \text{ mg/L } \times 8.34 \text{ lbs/gal} = 10.8 \text{ lbs/day}$ 

# Calculating Feed Rates for Sodium Hypochlorite

Gallons per day = MGD x mg/L x 8.34 lbs./gal %strength x weight per gallon

weight of sodium hypochlorite

liquid actually needed.

Top part of equation calculates lbs of pure Cl

Dividing by weight per gallon will give you the number of gallons needed per day.

# Specific gravity

The ratio of the weight of a substance to the weight of water is called specific gravity. Water weighs **8.34 lbs./gal** and has a specific gravity of 1.0.

Calculate the weight of 1 gallon of 12.5% sodium hypochlorite, assuming it has a specific gravity of 1.2.

1.2 x 8.34 lbs./gal = 10 lbs./gal



### Sodium Hypochlorite (Liquid CI) feed rate calculation example

What is the feed rate for 12.5% sodium hypochlorite with a s.g. of 1.2 when the plant flow is 0.5 MGD and the dosage is 0.9 mg/L?

**Solution**: Use the following formula, and plug in values for flow, dosage, specific gravity, and solution strength.

 $0.5 MGD \times 0.9 mg/L \times 8.34 lb/gal = 3 gallons per day 0.125 x 1.2 x 8.34 lb/gal$ 

Pounds formula can be arranged to solve for dose.

```
\frac{\text{Pounds per day}}{\text{Pounds per day}} = \frac{\text{Dose (mg/L) x Flow (MGD) x 8.34 lbs./gal}}{\text{[Flow (MGD) x 8.34lb/gal]}}
```

An operator checks the settings at a treatment plant and notes that the gas chlorine feed rate is set at 30 pounds per day and that the plant flow is 2.1 MGD. What is the dose of chlorine in mg/L that is being administered to this water source?

Dose (mg/L) = Pounds per Day
$$[Flow(MGD) \times 8.34lb/gal]$$

 $= 1.71 \, \text{mg/L}$ 

# Poll 3

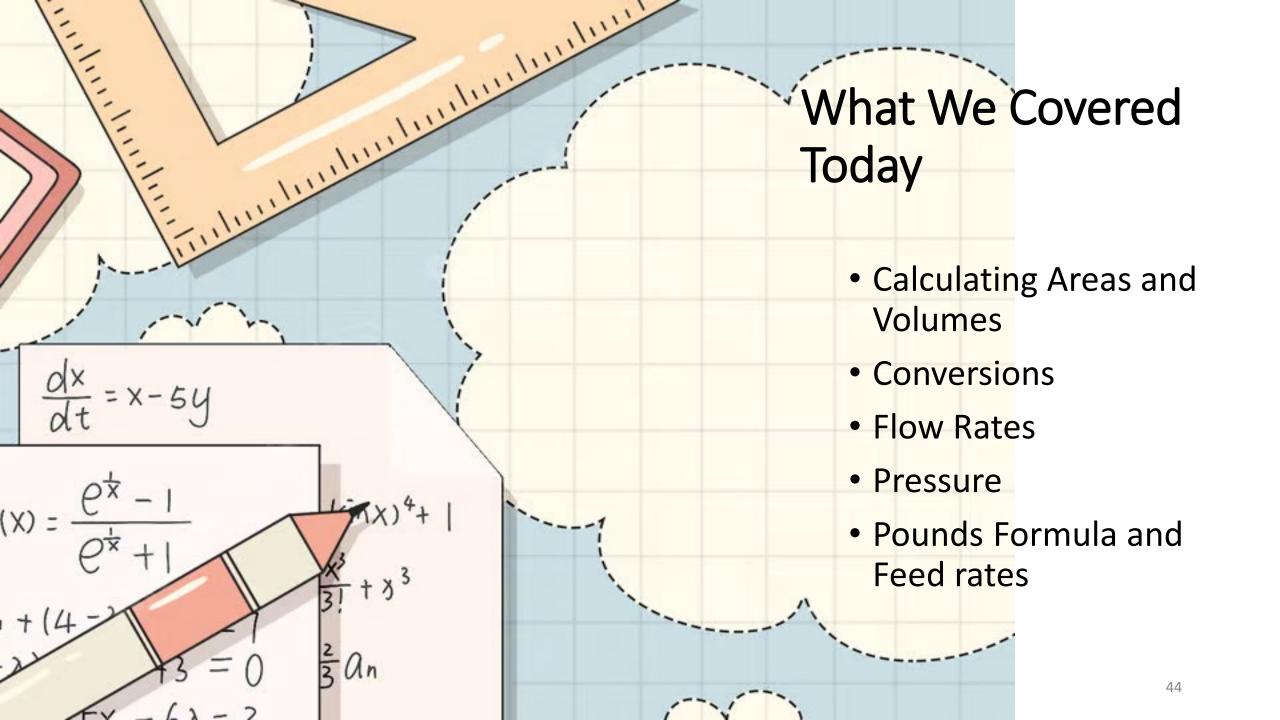
A ground water well produces a flow of 350 gallons per minute. The chlorine dose is 1.3 mg/L. What is the feed rate of gas chlorine in lbs per day?

- a. 3.52 lbs/day
- b. 4.65 lbs/day
- c. 5.46 lbs/day
- d. 6.82 lbs/day

# Poll 3 Solution

A ground water well produces a flow of 350 gallons per minute. The chlorine dose is 1.3 mg/L. What is the feed rate of gas chlorine in lbs per day?

### Solution:


Step 1: Convert flow to MGD

350 gal/min x 1440 min/day = 0.504 MGD

1,000,000 gal/MG

Step 2: Calculate flow

0.504 MG/day x 1.3 mg/L x 8.34 lbs./gal = 5.46 lbs/day Answer is C



Our brains can only hold **3 to 5** things at once before they start tuning out.

So how do we get the important stuff to stick?

DISTILL IT DOWN to 3.

# Main Takeaways

If you remember nothing else, remember these 3 key points...



### **Use of Volumes**

Areas and Volumes can be necessary for determining a variety of different things including flows, and concentrations.



### **Conversions**

Conversions are important and are useful in manipulating the information that we're given into the information that we need.



Rates, both Feed and Flow, are critical concepts in the proper operation of drinking water systems.

# Thank you for participating!

# Share your thoughts on today's class in the chat.

- 1. Was there something you learned that was new to you?
- 2. What parts stimulated questions you want to explore further?
- 3. What can we clarify or expound on?



