Onsite Wastewater System Basics

Dr. Jason R. Barrett Associate Extension Professor Associate Director Mississippi Water Resources Research Institute

Onsite Wastewater Treatment

- What is an On Site Sewage Facility (OSSF)?
- Why are we concerned about wastewater?
- Evolution of onsite wastewater treatment
- Function of a septic system
- Evaluation of septic tank operation
- When should a septic tank should be pumped?
- How to live with a septic system

Onsite Wastewater Treatment

Malfunctioning Onsite System

Evolution of Wastewater Management

- Evolving goal:
 - Disposal: effluent goes away versus treatmentDispersal: TREATMENT
- Public health AND environmental issues addressed
- Management:

Groundwater

Well

- Disposal: often no management at all
- Dispersal: system management is critical

Aerobic soil

How do we make the OSSF work?

- Evaluate the wastewater source:
 - Hydraulic and organic loading
- Evaluate site
 - Wastewater treatment
 - Wastewater acceptance
- Choose a final treatment and dispersal component
- Choose the appropriate pretreatment system
- Operation and maintenance

What is a Septic Tank?

- Water tight containers
 - Concrete
 - Plastic / Fiberglass
 - NOT Metal
- Detention time
 - □ Typically 2-3 days
 - Calm conditions
- Gravity separation
 - Heavy sinksLighter floats
- Anaerobic digestion

Lids . Risers

SEPTIC TANK

- Compartmented tank or series of tanks
 - Concrete, fiberglass, polyethylene
- Primary treatment solids separation

TYPICAL SYSTEM COMPONENTS

- Household Collection System
- Septic Tank
- Effluent Distribution
 - Distribution Box
 - Pump/Dosing System
- Drainfield/ Absorption System/ Soil Treatment Area
- Replacement Area

http://geoscape.nrcan.gc.ca/h2o/bowen/quality_e.php

TWO COMPARTMENT SEPTIC TANK

Lesikar, 1999; On-site wastewater treatment systems, L-5234

- Critical to retention of solids in the septic tank
- Determine if baffles are in place

Concrete
Plastic
Fiberglass
PVC tee

Effluent Screens

- Installed at the septic tank outlet
- Trap solids trying to leave the septic tank
- Protect the drainfield
- Screen is washed off directly into the inlet side of the septic tank

Tank Structural Condition

- Watertight (no visual leaks)
- Rebar exposed
- Root intrusion
- Corrosion or spalling present
- Cracks or Flex

DISTRIBUTION BOX

LATERALS

Installing distribution laterals

Septic system and subsurface effluent movement

Installing lateral in gravel filled trench

HOW DOES A SEPTIC SYSTEM WORK?

What is a Septic Tank?

What is a Septic Tank?

Conventional Septic Tank System

Two-compartment septic tank

Soil absorption field

Gravel-less Pipe Distribution

Clean-out/Inspection port

Geotextile fabric

Soil absorption field

Leaching Chambers

Low-Pressure Distribution

Mound Distribution Field

Septic tank

Pump tank

Role of Vegetative Cover in Treatment System

- A healthy cover crop is essential for the system to function properly.
- Plants will:
 - Take up water and nutrients
 - Stabilize the soil and prevent erosion
 - Support beneficial soil organisms
- Do NOT park vehicles on drainfield
- Do NOT construct decks, driveways or buildings over drainfield
- NO woody vegetation over drainfield

What is an Aerobic Treatment Unit?

Chlorinator

Single-compartment trash tank

Aerobic treatment unit

Pump tank

Spray heads

What is an Aerobic Treatment Unit?

Aerobic Treatment Unit

- Aerobic Microbes
 - Require oxygen to live and grow
 - Consume waste and bacteria
- Air supply
 - Compressor / Aerator
 - Diffusers
 - Oxygen transfer to wastewater
 - Mixing of food and organisms
- Clarifier

Aerobic Treatment Unit System

- Disinfection
 - Disinfection, NOT sterilization!
 - Chlorinator
 - NOT SWIMMING POOL TABLETS!
 - UV light
- Distribution
 - Pump tank
 - Spray field
 - Subsurface drip

Water Quality – Spray Field

- High potential for human contact
- This is effluent NOT DRINKING WATER!!!!
- Soil microbes are the final treatment!
- A healthy cover crop is essential for the system to function properly.
 - Take up water and nutrients
 - Stabilize the soil and prevent erosion
 - Provide food and habitat for beneficial soil organisms

Subsurface Drip Distribution

FEEDING THE SYSTEM Conventional and Aerobic Systems

FATS, OILS AND GREASE

Constituent	State at room temperature	Comments				
Fats	Solid	Non-toxic to the system, origin – animals, will separate in water				
Oils	Liquid	Non-toxic to the system, origin – plants, trouble separating in water				
Grease	Solid	Residual material on appliances; solid material on pans/equipment; petroleum products; moisturizers; bath oils; tanning oils; <u>Toxic</u> to the wastewater system				

Kitchen

- Dishwasher
 - Hydraulic surges of wastewater
 - Space out loads
 - Organic load
 - Clean/scrape plates
- Garbage Disposal
 - Increases scum by 20%
 - Pumping required 1-2 years sooner
 - Organic matter has not been digested, so it will take longer to break down
 - Small particles take longer to settle

• Use should be spread out Returning from vacation Liquid soap is recommended Use less Remove risk of fillers in powders Use bleach sparingly Consider a high efficiency washer

Bathroom

- Only urine, feces, soap, toilet paper and limited amounts of cleaner should go down the drain
- No feminine products, prophylactics, cigarette butts, etc.
- No every-flush toilet bowl sanitizers
- Bath and body oils
 - Increases fats, oils and grease
 - If usage is great, may need more maintenance

Septic Safe?

Toilet Paper

- Excessive use results in faster sludge build up
- Treated toilet paper (with lotions) prevents paper from settling
- Wet wipe disposal is discouraged

OPERATION AND MAINTENANCE OF SEPTIC SYSTEMS

Pumping

- Removal of septage from a wastewater treatment system component
- Necessary to prevent accumulated solids from moving into downstream components
 - Drain fields
 - Pumps

Septic Tank Pumping Recommended?

- Should be pumped when total solids reach 25-33% of tank capacity
 - □ If 'A' is less than 3"
 - □ If 'B' is less than 12"
- Typically required every 3 to 5 years
- Pump during dry seasons to reduce the risk of tank floatation

Septic Tank Pumping Recommended?

Tank Size	Household Size (Number of People)									
(gals)	1	2	3	4	5	6	7	8	9	10
500	5.8	2.6	1.5	<mark>1.0</mark>	0.7	0.4	0.3	0.2	0.1	_
750	9.1	4.2	2.6	1.8	1.3	1.0	0.7	0.6	0.4	0.3
1,000	12.4	5.9	3.7	2.6	2.0	1.5	1.2	1.0	0.8	0.7
1,250		7.5	4.8	3.4	2.6	2.0	1.7	1.4	1.2	1.0
1,500		9.1	5.9	4.2	3.3	2.6	2.1	1.8	1.5	1.3
1,750			6.9	5.0	3.9	3.1	2.6	2.2	1.9	<mark>1.6</mark>
2,000			8.0	5.9	4.5	3.7	3.1	2.6	2.2	2.0
2,250				6.7	5.2	4.2	3.5	3.0	2.6	2.3
2,500					5.9	4.8	4.0	4.0	3.0	2.6

Note: More frequent pumping needed if a garbage disposal is used.

Contact Information

Dr. Jason R. Barrett Associate Extension Professor Associate Director Mississippi Water Resources Research Institute Mississippi State University Extension **133 Scales Building** Mississippi State, MS 39762 662.325.1788 phone Jason.barrett@msstate.edu www.wrri.msstate.edu

