ENVIRONMENTAL

PFAS Today, Tomorrow, and Forever Will Shaffer, PE

November 14, 2023

Agenda

- Introduction
- Regulations
- Characterization, Sampling and Analysis
- Treatment
- Funding Options

ENVIRONMENTAL

Introduction

Introduction

EEC Environmental

- National environmental engineering consultant
- Chemists, engineers, geologists, hydrogeologists, regulatory and compliance specialists
- PFAS treatment experts

PFAS Services

- Site assessment and remediation
- PFAS characterization and planning
- Treatment system design
- Owner's representative consultant

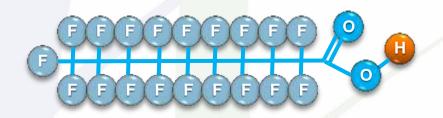
Will Shaffer, PE Project Engineer

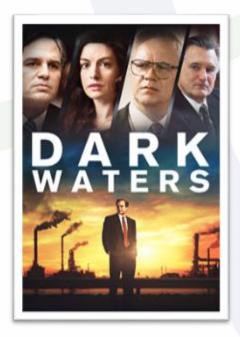
What is Your Level of PFAS Knowledge? ENVIRONMENTAL

- 1. I have already begun PFAS planning or have installed PFAS treatment systems
- 2. I am learning about PFAS, but no actions yet
- 3. I am brand new to PFAS

What is Your Role?

- 1) Regulator
- 2) Water/wastewater system owner
- 3) Water/wastewater system operator
- 4) Engineer or consultant
- 5) Other


What is Your Greatest Concern?


PFAS in...

- 1) Drinking Water
- 2) Wastewater/Biosolids
- 3) Recycled Water
- 4) Stormwater
- 5) Impacted Sites
- 6) Air Quality
- 7) Other

PFAS 101

- <u>Broad class</u> of manufactured chemicals used to make products that resist heat, oils, grease, stains, & water
- Teflon[™] coated cookware, carpets, clothing, paper packaging for food, fire retardants, AFFF
- First developed in 1940s
- Over 5,000 PFAS compounds (terminal and precursors)
- Extremely stable in environment and can be found in soil, air, surface water, groundwater, wastewater plant effluent, sewage sludge and landfills "Forever Chemicals"

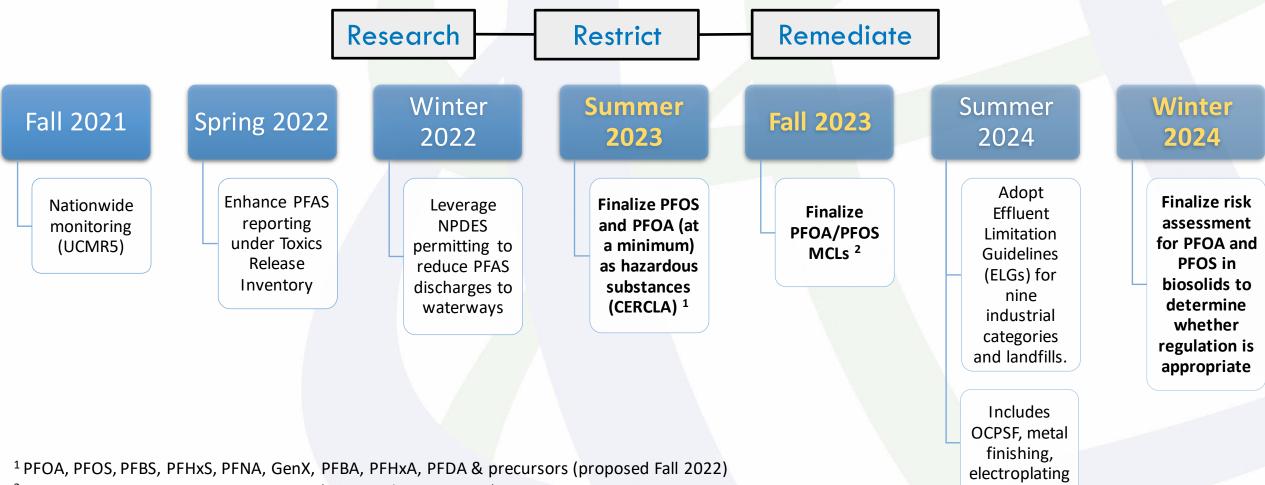
PFAS Concentration Units: ppt 1 ppm 1 ppb 1 ppm (part per million) 1 ppm (part per billion) 1 milligram per liter, mg/L

1 second in 11.5 days

1 microgram per liter, μ g/L 1 second in 31.7 years

1 ppt (part per trillion) 1 nanogram per liter, ng/L 1 second in 31,700 years 1 drop in 20 Olympic pools ¹/₂ tsp in SoFi Stadium

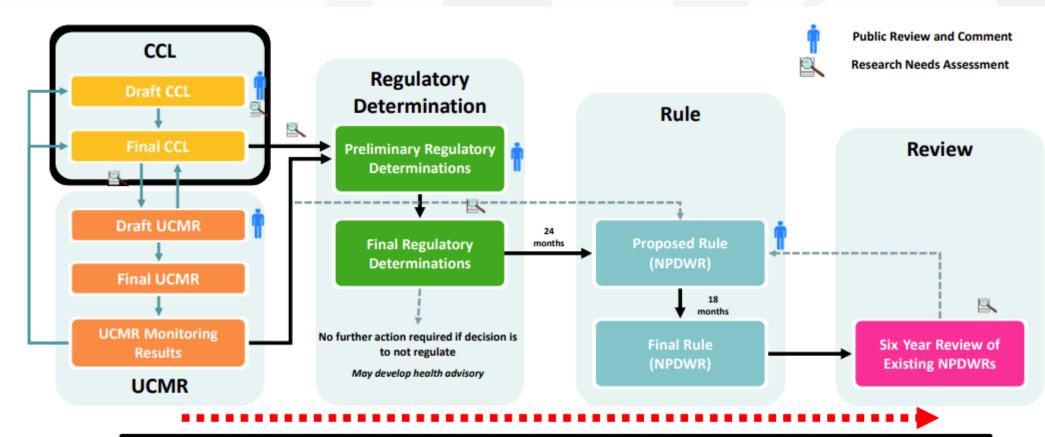
1 ppt



ENVIRONMENTAL

Regulations

EPA PFAS Strategic Roadmap Key Actions



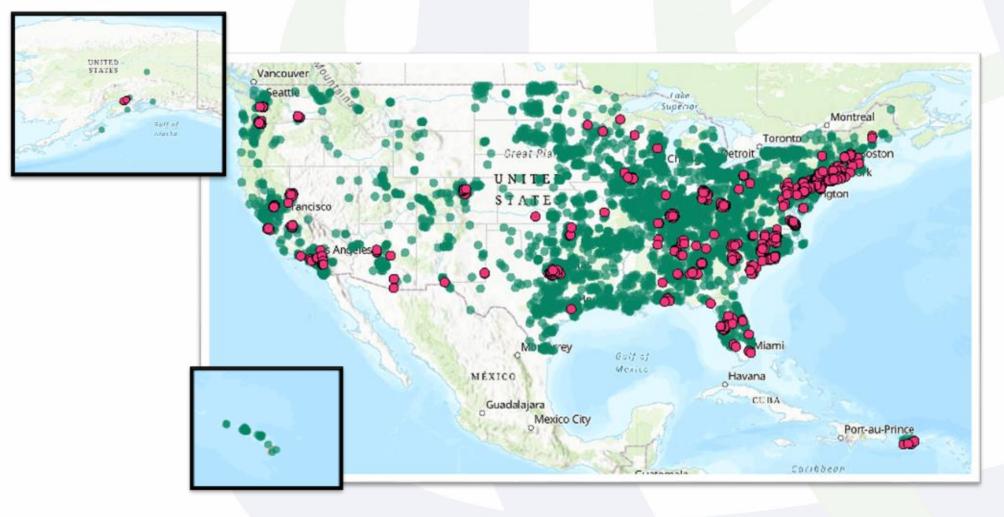
² PFOA, PFOS, PFNA, PFHxA, PFBS, GenX (proposed Spring 2023)

Flow of SDWA Regulatory Processes

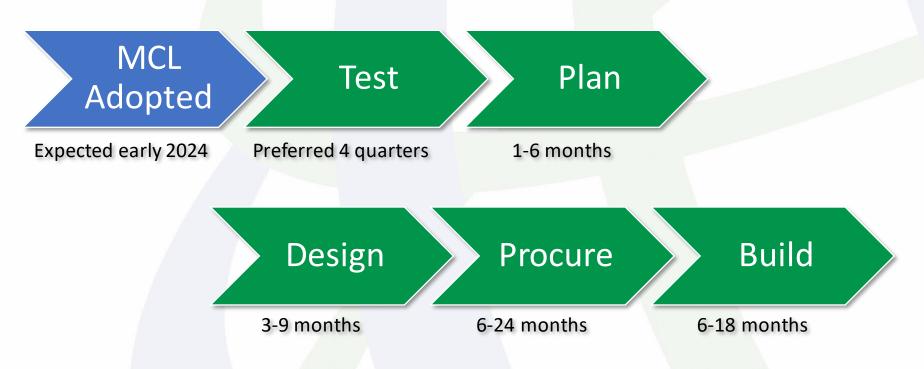
Increased specificity and confidence in the type of supporting data used (e.g., health, occurrence, treatment) is needed at each stage

Source: USEPA

Drinking Water with PFAS > Proposed MCLs As of October 2023


	0-10,000 customers Small PWS	10,000+ customers Large PWS
Number of PWS Sampled	1,883	1,189
PFOA > Proposed MCLs	132 (7.0%)	161 (13.5%)
PFOS > Proposed MCLs	164 (8.7%)	166 (14.0%)
GenX > Proposed MCLs	0	1
PFBS > Proposed MCLs	0	0
Exceedance Percentage	10.8%	18.2%

https://www.epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule-data-finder


Drinking Water with PFAS > Proposed MCLs

As of August 2023

Timeline to Comply

- 3 years to comply with MCL, additional 2 years possible
- Equipment lead time up to 24 months (vessels, electrical)

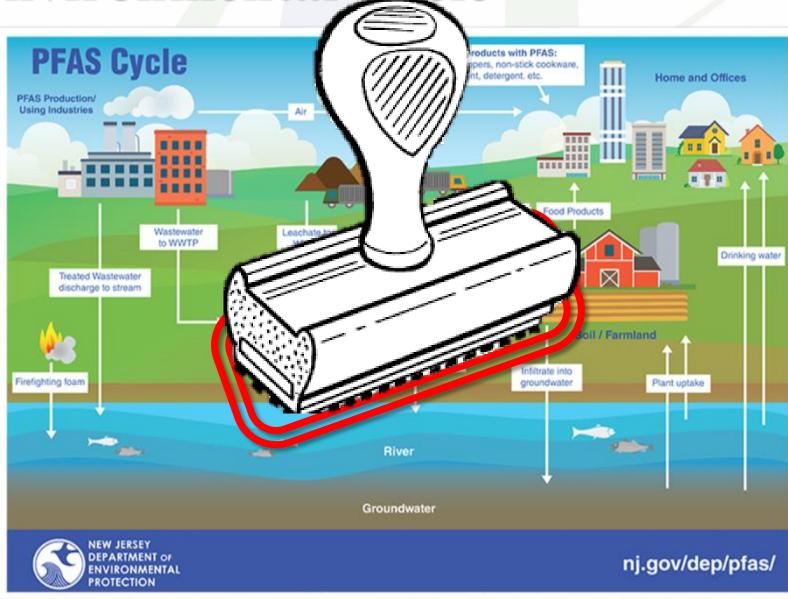
Drinking Water Standards in the US

State	PFOS	PFOA	PFNA	PFHxS	PFBS	HFPO-DA (GenX)	РҒНрА	PFHxA	PFDA
Massachusetts (MCL)	20	20	20	20			20		20
Michigan (MCL)	16	8	6	51	420	370		400,000	
New Hampshire (MCL)	15	12	11	18					
New Jersey (MCL)	13	14	13						
New York (MCL)	10	10							
Pennsylvania (MCL)	18	14							
Vermont (MCL)	20	20	20	20			20		
Wisconsin (MCL)	70	70							
USEPA (Proposed MCL)	4	4	10 *	9 *	2,000 *	10 *			

Values in parts per trillion (ppt) or ng/L

*Hazard Index Values: Sum of fractions must not exceed 1.0

CERCLA Designation



Drinking Unknown Impact Water MCLs 10-20% of PWS Regulations 3 years to comply still pending nationally **Cost impacts** unknown

ENVIRONMENTAL

Characterization, Sampling, and Analysis

PFAS Environmental Cycle

Michigan PFOS Source Study 2020

Industry / Category / Type	% Confirmed Sources	Range Effluent PFOS Screening Level of 12 ppt
Landfills	88%	13 - 5,000
Metal Finishing	15%	20 - 240,000
Contaminated Sites	50%	14 - 34,000
Centralized Waste Treaters (CWTs)	75%	13 - 8,400
Paper Manufacturing, Packaging	64%	16 - 410
Commercial Laundries	42%	24 – 69
Chemical Manufacturers	24%	18 - 4,600,000
AFFF-contaminated Sewers	100%	240 - <mark>45,000</mark>

Drinking Water Analytical Methods

EPA Method 537.1

- 18 PFAS Compounds
- Preservative Trisma

EPA Method 533

- 25 PFAS Compounds
- Preservative ammonium
 acetate

Wastewater Analytical Methods

EPA Draft Method 1633

- Groundwater, surface water, wastewater, sediment, soil, tissue, biosolids
- Not yet promulgated, but widely used
- 40 PFAS compounds (terminal and precursor PFAS)

Total Oxidizable Precursors (TOP) Assay

- Non-targeted analysis
- Indirect measurement of precursors that may transform into terminal PFAS compounds
- EPA Draft Method 1621 Total Organofluorine (TOF) Assay
 - Screening method to estimate the adsorbable organic fluorine concentration
 - An indicator of total PFAS concentration

Wastewater Analytical Methods

Draft Method

1633

40 analytes totaling 100 ppt

TOP Assay 40 analytes and precursors totaling **1,000 ppt**

Draft Method 1621 TOF analysis

Total Organofluorine totaling 10,000 ppt

Hypothetical WWTP influent sample

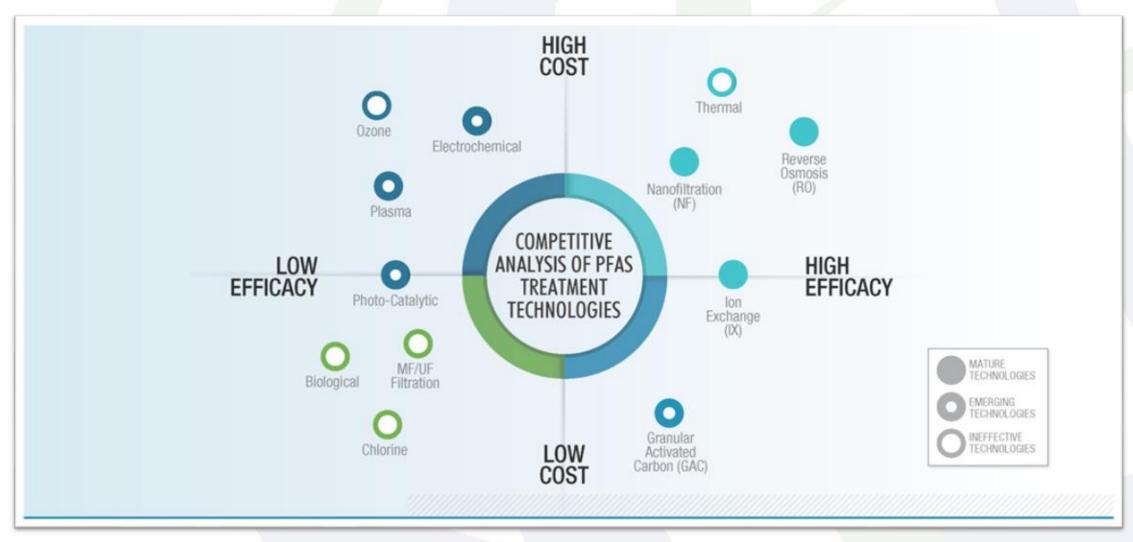
Sources

Source identification is crucial

Sampling

Analytical may only show some of the picture

Ubiquitous


"Toolbox" approach may be necessary

ENVIRONMENTAL

Treatment

Best Available Treatment Technologies

Source: Carollo

Best Available Treatment Technologies

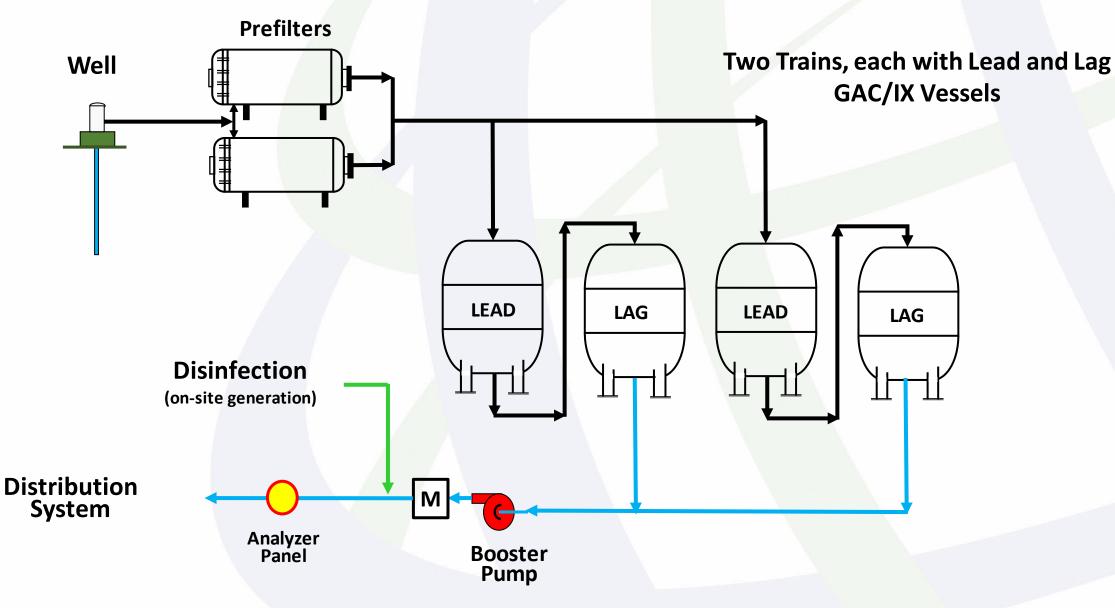
Technology	Removal Efficiency	Pros	Cons
Granular Activated Carbon (GAC)	 Effective for long- chain PFAS and strongly adsorbing compounds 	 Well understood technology Simple operation 	 High OPEX due to frequent reactivation Large footprint Disposal/Reactivation of large volumes of carbon
Ion Exchange Resin (IX)	• Excellent removal of certain PFAS (anions)	 Efficient single-step technology Small footprint Low to medium OPEX 	 Non-regenerable in most cases Waste management (resin and brine) can be time consuming
Membrane Processes	 Effective for PFAS removal, both long- and short chain Removes other CECs 	 Efficient process if properly operated and maintained Low to medium OPEX 	 High CAPEX Complex operation Concentrate treatment/disposal

Adsorption Technologies (GAC/IX/Novel)

Granulated Activated Carbon (GAC)

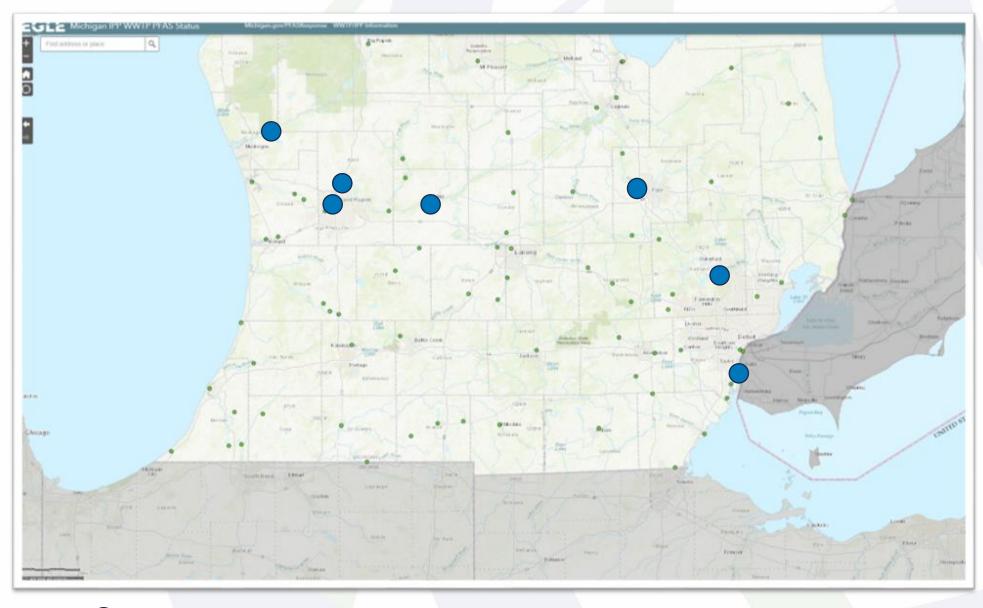
Ion Exchange (IX) Resin

FLUORO-SORB® 400


Novel Adsorbent

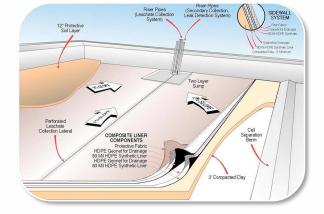
Adsorption Technologies (GAC/IX/Novel)

Typical Pressure Vessel Treatment System



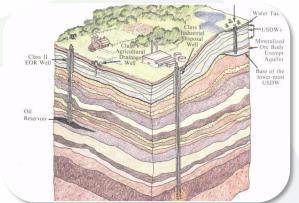
PFAS at WWTPs

- Driven by NPDES limit
- PFAS transformation at the POTW
- Controllable (industrial) vs. uncontrollable (domestic, stormwater) contributions important
 - IPP programs, source investigations
- Biosolids a big concern (land application)
- Recycled water programs in jeopardy
- Treatment options largely unknown



POTWs exceeding Water Quality Standard (WQS)

PFAS Waste Disposal Options



Landfill (haz)

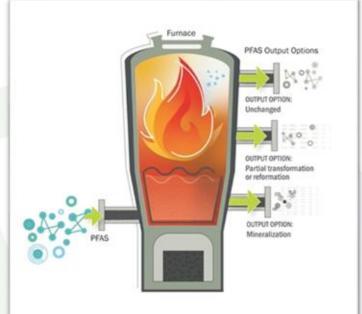
Incineration

Destruction

Deep well injection

Sources: 1 US Ecology 2 Center for Land Use Interpretation/Creative Commons 3 Duke University 4 Geoengineer.org

PFAS Destruction


Treatment (separation/concentration) requires waste disposal or destruction

Illinois and Department of Defense (DoD) have banned incineration of PFAS-laden waste (April/June 2022)

- EPA Office of Research and Development (ORD) with DoD studying fate of PFAS during incineration
- Incineration could result in Products of Incomplete Combustion (PIC)

DoD temporary incineration ban (April 2022) modified with issuance of destruction guidance (July 2023)

PFAS Destruction

Supercritical Water Oxidation (SCWO) Hydrothermal Alkaline Treatment (HALT)

Electrochemical Oxidation

Sources: 1 Duke University 2 Aquagga 3 Axine Water Technologies Laboratory or pilot scale Low flow, high concentration

Emerging technologies

BAT

Best available technologies (BATs) are mature Water v Wastewater

Drinking water is simpler Wastewater is complicated Disposal/ Destruction

Disposal and destruction can be complicated

ENVIRONMENTAL

Funding Options

Funding Options

Bipartisan Infrastructure Law (\$billions) Grants and low interest funding

• Disadvantage community subsidies may be available

Clean Water State Revolving Fund (CWSRF) Litigation and cost recovery

Environmental Finance Center Network

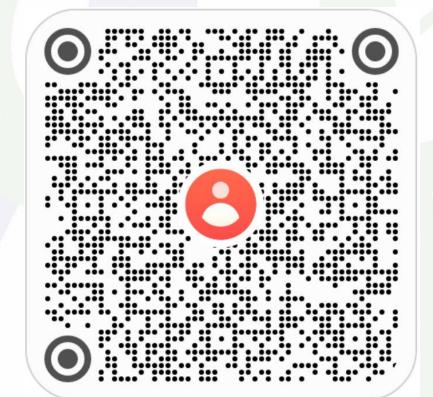
https://efcnetwork.org/resources/funding-tables/

Control of the Source of the S

EMERGING CONTAMINANTS IN SMALL OR

Act Now!	Assess	Treat	EFCN		
We are just getting started. Don't wait!	Characterize Identify sources	Treatment options are available	Leverage your local EFCN chapter		

Questions?


Speaker Contact Information

Will Shaffer, PE

Project Engineer

ENVIRONMENTAL

C: (949) 309-7635 wshaffer@eecenv.com www.eecenv.com

Thank you! Environmental Finance

Center Network

Southwest EFC

SOUTHWEST ENVIRONMENTAL FINANCE CENTER