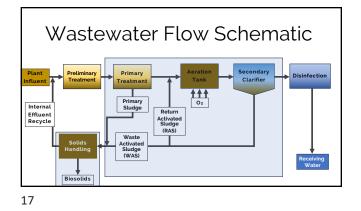
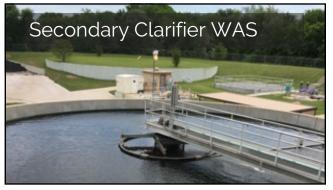


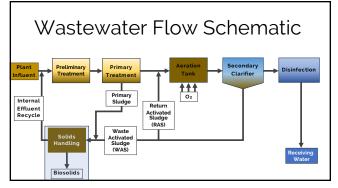
Coarse Screenings

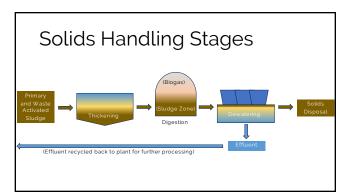




Biosolids Sources

Here comes the sludge ...

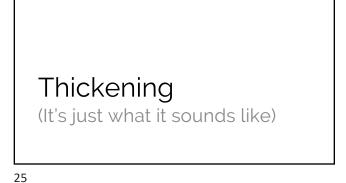




Overview

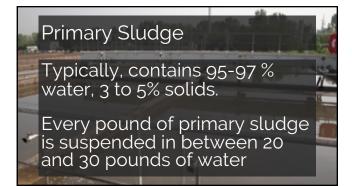
Solids Handling Stages

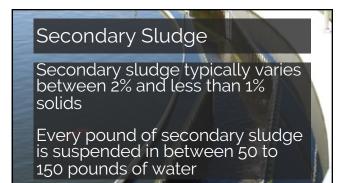
Thickening – reducing the sludge volume
Digestion - breaking down the sludge with micro-organisms
De-Watering – removing the water from the solids
Disposal or Reuse – the end of the line


23

Solids Handling Stages

Digestion - breaking down the sludge with micro-organisms

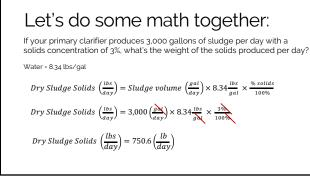

Disposal or Reuse – the end of the line


24

Why is thickening necessary?

26

If you didn't remove water, your digestion equipment would have to be **larger**.

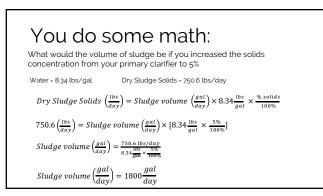

Advantages

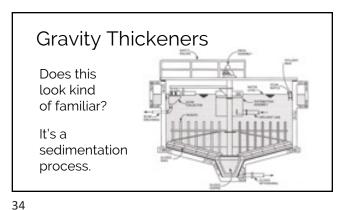
Improved digester performance

Construction cost savings: smaller sludge volume = smaller required digestion facilities

Reduction in heating costs: digesters may need heating, the smaller they are, the cheaper that is

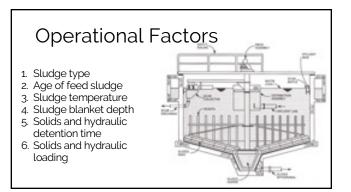
30

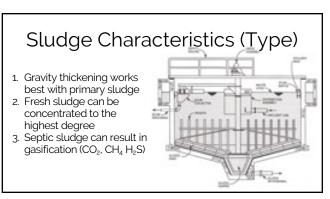


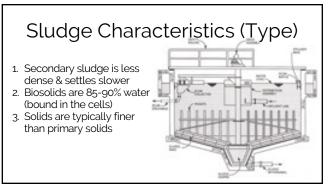

31

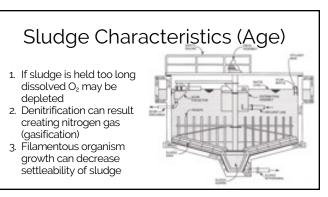

29

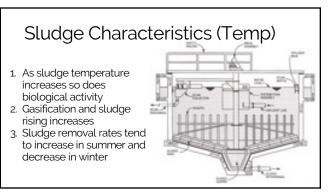
32

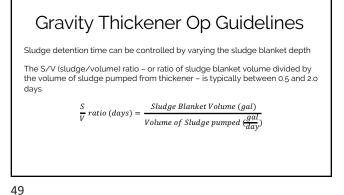


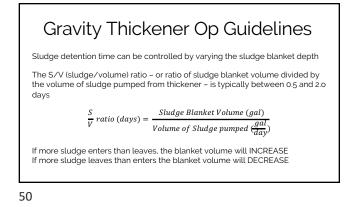






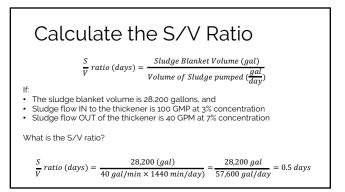


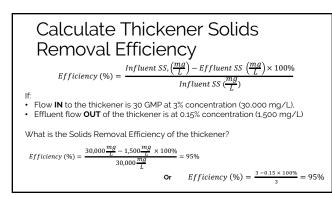

л	л
4	4

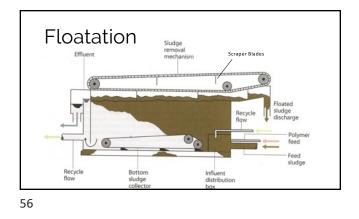

Gravity Thickener Op Guidelines

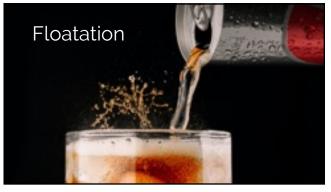
	%
20 - 30	8 - 10
5 - 8	2 - 4
8 - 10	7 - 9
6 - 12	4 - 9
10 - 20	7 - 9
	5 - 8 8 - 10 6 - 12

Gravity Thickener Op Guidelines				
Sludge Type	Hydraulic Loading Rate (GPD/ft²)			
Primary Sludge	400 - 800			
Activated Sludge	100 - 200			
Combined Primary & Activated Sludge	150 - 300			
Hydraulic loading rates may be achieved by blending secondary effluent with the sludge entering the thickener.				
Higher flows of fresh liquid will help prevent septic conditions and odors from developing				



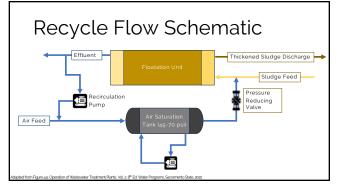


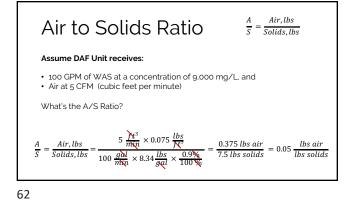



DAF, Centrifuges, Belts, Filtration, Drums

Four Floatation Methods

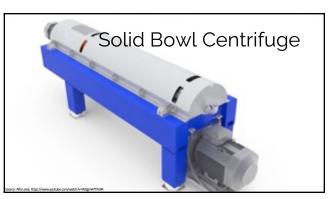
- Dispersed Air Floatation Bubbles are generated by mixers or diffused aerators
- Biological Floatation using gasses generated by biological activity to float solids
- Dissolved Air (Vacuum) Floatation where the effluent is aerated at atmospheric pressure and released under vacuum
- Dissolved Air (Pressure) Floatation where the effluent is aerated under pressure and released at atmospheric pressure

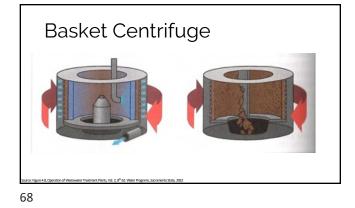

57


58

3 Pressure Floatation Methods

- Full-Flow Pressure Floatation entire sludge influent flow is pressurized and released into DAF unit
- Partial-Flow Pressure Floatation some of the sludge influent flow is pressurized and released into DAF unit and some sludge in released directly into the DAF unit without pressurization
- Recycle-Flow Pressure Floatation part of the effluent flow, or other water flow source is recycled, pressurized and released into the DAF


Operational Guidelines


	Without Polymer Addition	With Polymer Addition
Solids Loading (lbs/day/ft²)	9.6 - 24	24 - 48
Hydraulic Loading (GPM/ft²)	0.5 - 1.5	0.5 - 2.0
Recycle %	100 - 200	100 - 200
Air/Solids Ratio (lb/lb)	0.01 - 0.10	0.01 - 0.10
Minimum Influent Solids Concentration (mg/L)	5,000	5,000
Float Solids Concentration (%)	2 - 4	3 - 5
Solids Recovery (%)	50 - 90	90 - 98

Some DAF Troubleshooting			
Issue	Options		
Float blanket too thick	Increase flight speed; check solids loading, lower flow rate if possible		
Float blanket too thin	Decrease flight speed, check solids loading, increase flow rate if possible		
Good effluent but thin float	A/S is too low, increase air input; check compressors		
Poor effluent but thin float	Pressure may be too low or high Recycle pump may be inoperative Re-aeration pump may be inoperative Check chemical system Loading may be excessive		

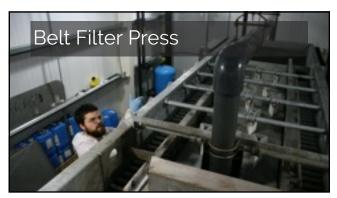
Thickener Comparison				
Method	Sludge Type	Use & Success		
Gravity Thickener	Untreated Primary	Common, excellent results		
	Untreated Primary & WAS	Often used, better for small plants		
	WAS	Rare, poor solids concentration		
Dissolved Air Floatation (DAF)	Untreated Primary & WAS	Limited use – results similar to gravity thickeners		
	WAS	Common, but decreasing due to cost		
Solid Bowl Centrifuge	WAS	Often used in medium to large plants, good results 4-6% solids concentration		
Gravity Belt Thickener	WAS	Often used in medium to large plants, good results 3-6% solids concentration		
Rotary Drum Thickener	WAS	Limited use, in medium to large plants, good results 5-9% solids concentration		
Source: Table 13-18, Westerwater Engineering, Metcalf & Eddy, McGraw-Hill, 2014				

71

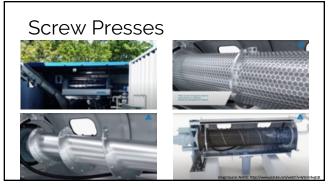
Digestion The short version

The short version (More on this in Part 2)

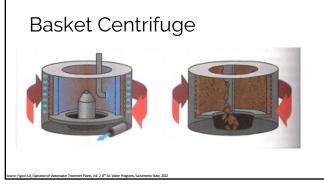
De-watering


More Volume Reduction – Filtration, Belts, Presses, Centrifuges

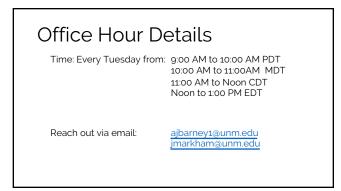
76



77


Other Dewatering Presses

Screws & Rotary Mechanisms



CONTACT INFORMATION SOUTHWEST ENVIRONMENTAL FINANCE CENTER Department of Civil Engineering MSC01 1070 1 University of New Mexico Albuquerque, NM 87131 505-277-0644 Swefcgunm.edu http://swefc.unm.edu