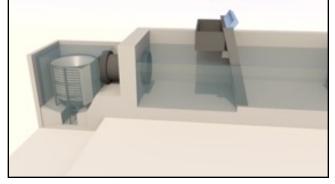
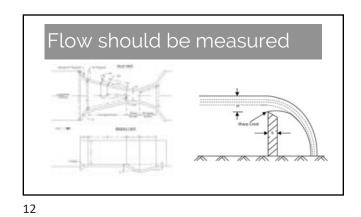
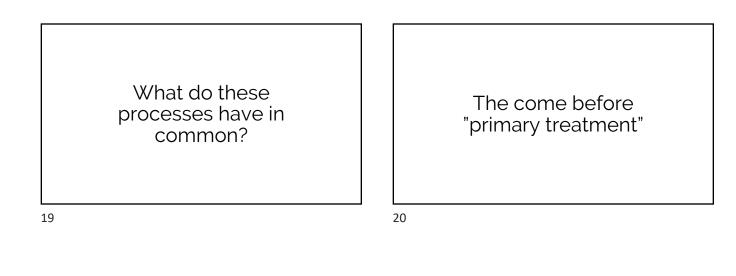
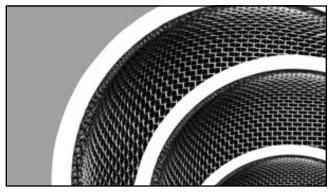

Typical Influent Pollutant Concentrations BOD5 TSS 200 mg/L 200 mg/L < 30 mg/L < 30 mg/L < 1000 mg/L TDS 800 mg/L Settleable Solids 10 mL/L < 0.1 mg/L 6-9 pH 6-9 . Fecal Coliform Too numerous to count < 500 cfu/ 100mL < 10 mg/L Total Nitrogrn TKN (Ammonia + Organic Nitrogen 30 mg/L Nitrate/ Nitrate (Inorganic Nitrogen) < 1.0 mg/L < 1.0 mg/L Phosphorus 2.0 mg/L Fats, Oils, and Grease Varies greatly None Visible /45 Effluent Rule Parameter 7-day averge 30-day average BOD5 30 mg/L 45 mg/L TSS 30 mg/L 45 mg/L

6








They are physical processes

They protect the treatment equipment

They prep the wastewater for primary and secondary treatment.

24

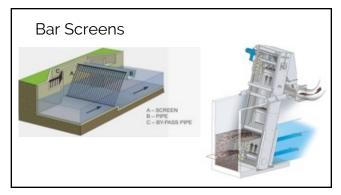
25

26

What is "Preliminary Treatment"? (The short version)? "Preliminary treatment is the removal of metal, rocks, sand, eggshells and similar materials that may hinder the operation of a treatment plant."

How do we do it? (The short version)

"Preliminary treatment is accomplished by using equipment such as bar racks, or bar screens, shredders, and grit removal systems."

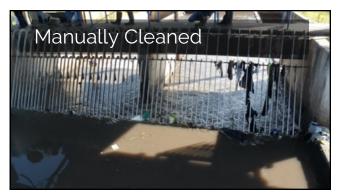

29

30

Preliminary Facilities

Coarse Screens

Materials


Typically made from noncorrosive metal:

- Aluminum, or
- Stainless Steel

Gap Sizes

- Between 3/8" and 2" it's a "Bar Screen"
- Over 2" it's a "Bar Rack" or "Trash Rack"

35

37

38

39

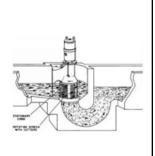
Design Considerations

Size Classification (range of screen opening)
Coarse: 1 - 2 in
Coarse: 0.6 -0.3 in
Fine Coarse: 0.1 – 0.5 in

Source: Crites and Tchobanoglous, 1998.

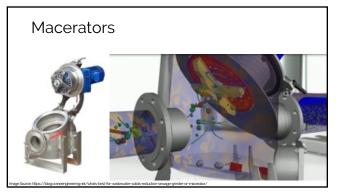
Coarse Solids Reduction

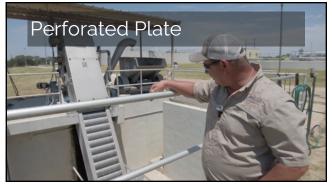
Communitors, Grinders and Macerators


42

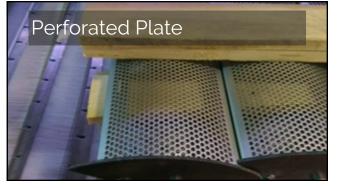
44

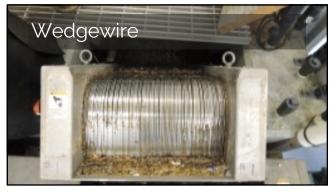
- Rags and debris are shredded and left in the water
- Can clog equipment and be labor intensive
- Require electricity unlike manual bar screens

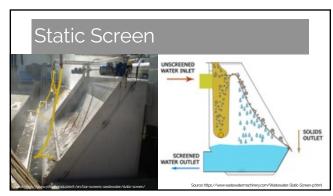

45

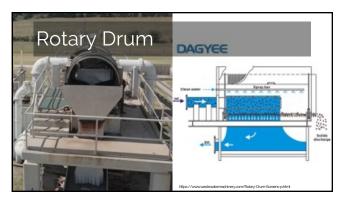


Preliminary Facilities


Fine Screens







56

57

Screening vs Grinding

Screening REMOVES materials from the influent stream

Communition or Grinding REDUCES the size of larger materials in the influent stream

Design Considerations

Screening Device Classification	Size Classification (range of screen opening)
Fine Bar Screen (Mechanically Cleaned)	Fine Coarse: 0.1 – 0.5 in
Perforated Plate (Mechanically Cleaned)	Fine Coarse: 0.1 – 0.4 in
Rotary Drum (Mechanically Cleaned)	Fine Coarse: 0.1 – 0.5 in
Fixed Parabolic Fine Screen	Fine: 0.01 - 0.13 in
Rotary Drum	Fine: 0.01 - 0.13 in
Rotary Disk	Very Fine: 0.01 – 0.02 in

Source: Crites and Tchobanoglous, 1998.

60

Screening vs Grinding

Screening PROTECTS downstream equipment from damage by large objects

Communition & Grinding PREPARES the larger materials in the influent stream for further treatment and removal by reducing their size

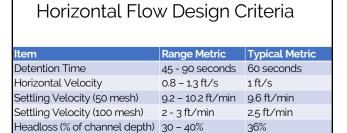
61

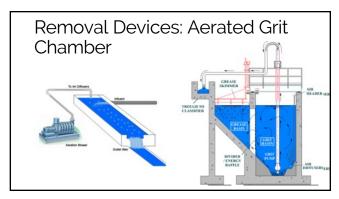
62

63

What is "grit?"

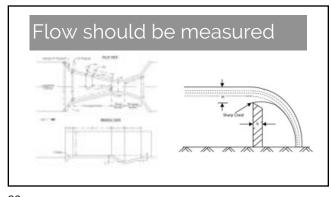
Traditionally defined as particles larger than **0.008 inches** (0.21 mm) and specific gravity of 2.5 (mostly inorganic)


Some modern equipment removes grit particles down to about **0.006 inches** (0.15 mm)



Removal Devices: Grit Channels	
Stope Section view Return to plant influent Calection State gates Collection Tough	
Center wall Octional flow reflectors	
Optional flow deflectors Contracting and Weis (when used) Collection trough Return to plant influent	

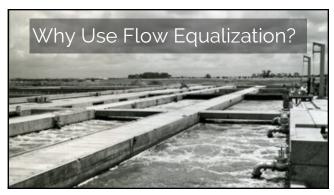
Component	Purpose
Settling Area	Place for grit to settle for later removal
Center Wall	Separates grit channels
Slide or Inlet Gate	Regulates number of channels in service for flow velocity
Stop or Outlet Gate	Insert to prevent backflow when cleaning
Weir	Controls channel water velocity
Grit Hopper or Grit Storage	Accumulates and stores grit before removal and disposal
Dewatering Drain	Drains channels for inspection
Drain Valve	Allows channel draining
	Source: Operation of Wastewater Treatment Plants, Volume 1, 8th Edition, 2019, OWP, T



Flow Measurement

It's important (and covered more I n depth in a different webinar)

81

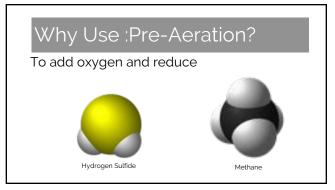


82

83

Flow Equalization & Pre-Aeration

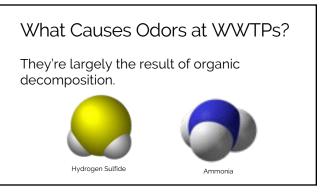
Why Use Flow Equalization?


To even out flow in the treatment plant

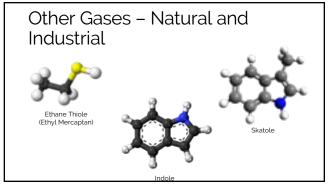
May allow for a smaller treatment plant

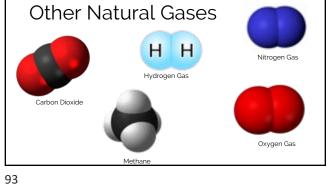
Less common in the US than in Europe

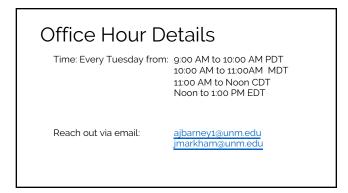
Has to be sized to account for extreme flows, particularly for combined systems


86

87







CONTACT INFORMATION SOUTHWEST ENVIRONMENTAL ENVI