

1

3

5

2

4

6

7

10

12

9

11

13

14

16

15

A Quick Refresher

Volumes \& Areas

Area: 2 dimensions (units²)

Area of a circle $=\pi \times r^{2}$

Area: Common Conversions:

1 square foot $=144$ square inches
1 acre $=43.560$ square feet

Useful Linear Conversions:

1 inch $=2.54$ centimeters $=0.0254$ meters
1 meter = 39.37 inches
1 mile $=5280$ feet
1 mile $=1.61$ kilometers $=1610$ meters
20

Area: Common Conversions:
1 square foot $=144$ square inches
Convert 12 square ft to square inches:

$$
12 f t^{2} \times 144 \frac{i n^{2}}{f t^{2}}=1728{i n^{2}}^{2}
$$

And back again...

$$
1728 \operatorname{in}^{2} \times \frac{1}{144} \frac{f t^{2}}{i n^{2}}=\frac{1728\left(i x^{2}\right)\left(f t^{2}\right)}{144 i n^{2}}=12 f^{2}
$$

21

22

Volume: 3 dimensions (units3) (or L or gal)

Volume of a box $=$ Length \times Width \times Height
Volume of a cylinder $=\pi \times r^{2 *} \times{ }_{23}$ Height

23

How many gallons are there in 1000 cubic meters?

1 cubic foot $=7.481$ gallons 1 cubic yard $=27$ cubic feet 1 gallon $=3.785$ liters 1 cubic meter $=1,000$ liters 1 liter = 1,000 milliliters 1 acre foot $=43.560$ cubic feet

24

1 cubic foot $=7.481$ gallons
1 cubic yard $=27$ cubic feet
1 gallon $=3.785$ liters
1 cubic meter $=1,000$ liters
1 liter = 1,000 milliliters
1 acre foot $=43.560$ cubic feet

Volume: Common Conversions

ly How many gallons are there in 1000 cubic meters?

1 cubic foot $=7.481$ gallons
1 cubic yard $=27$ cubic feet
$\mathbf{1}$ gallon $=3.785$ liters
1 cubic meter $=1,000$ liters
1 liter $=1,000$ milliliters
1 acre foot $=43.560$ cubic feet
Solution: $\quad 1000 \mathrm{ma}^{2} \times 1,000 \frac{\not{k}}{m^{2}} \times \frac{1 \mathrm{gal}}{3.7851}=264,200 \mathrm{gal}$
26

Time Refresher: Common Conversions

1 minute $=60$ seconds
1 hour $=60$ minutes $=3600$ seconds
1 day $=24$ hours $=1440$ minutes
1 year $=365$ days $=8760$ hours

28

30

New pieces of the puzzle Velocity \& Flow Rate Include a Time Element

27

How many minutes are there in a year?
1 minute $=60$ seconds
1 hour $=60$ minutes $=3600$ seconds
1 day $=24$ hours $=1440$ minutes
1 year $=365$ days $=8760$ hours

29

So, what is velocity?

The the distance (or length) something travels in a given time - you're answering "how fast"

$$
\frac{\text { distance }}{\text { time }} \frac{f t}{s e c} \text { or } \mathrm{fps}
$$

- feet per second (ft/sec, or fps) - meters per second (m/sec, or mps)

32

So, on to flow - what is it?

The volume flowing through something in a given time - you're answering "how much"
$\frac{\text { volume }}{\text { time }} \frac{f t^{3}}{s e c}$ or $\mathbf{c f s}$

- Gallons per minute (gal/min, or gpm)
- Cubic feet per second (ft3/sec, or cfs)
- Gallons per day (gal/day or gpd)
- Million gallons per day (mil. gal/day or MGD)

33

The basic flow formula:

Flow = Velocity \times Area Variables:

or	$Q=$ Flow
$V=$ Velocity	

$$
\begin{array}{ll}
Q=V \times A \quad A= & \text { Cross section Area } \\
\text { of the flow }
\end{array}
$$

$\mathrm{v}(\mathrm{ft} / \mathrm{sec}) \times \mathrm{A}\left(\mathrm{ft}^{2}\right)=\mathrm{Q}\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$
35

Calculate Flow

Sewage in a 12 " diameter force main is moving at $2.8 \mathrm{ft} / \mathrm{sec}$. What is the sewage flow through the force main in cfs?

Our Formula: $\mathbf{Q}=\mathbf{V} \mathbf{x} \mathbf{A}$

$$
\begin{aligned}
& V=2.8 \frac{\mathrm{ft}}{\mathrm{sec}} \\
& A=\pi r^{2}=\pi \times(0.5 f t)^{2}=0.785 f t^{2} \\
& \text { (A) } 8.9 \mathrm{cfs} \\
& A=\pi r^{2}=\pi \times(0.5 f t)^{2}=0.785 f t^{2} \\
& \text { (C) } 2.2 \mathrm{cfs} \\
& Q=2.8 \frac{f t}{\sec } \times 0.785 f t^{2}=2.2 \frac{f t^{3}}{\sec }=2.2 c f s
\end{aligned}
$$

Unpressurized Pipes

With the exception of force mains, sewers are NOT pressurized.

In that case you need the cross section and velocity of the effluent

38

39

Flow: Common Conversions
$1 \mathrm{cfs}=448.8$ gallons per min (gpm)
$1 \mathrm{cfs}=646,300$ gallons per day (gpd)
$1 \mathrm{MGD}=694.4 \mathrm{gpm}$
$1 \mathrm{MGD}=1.545 \mathrm{cfs}$
$1 \mathrm{MGD}=1,000,000 \mathrm{gpd}$
$1 \mathrm{cfs}=0.646 \mathrm{MGD}$

40
41

Convert 1 cfs to MGD

$$
\begin{aligned}
& 1 \frac{f t^{3}}{\sec } \times 60 \frac{\mathrm{sec}}{\min } \times 1440 \frac{\mathrm{~min}}{d a y} \times \frac{1}{7.481} \frac{\mathrm{gal}}{\mathrm{ft}^{3}} \times \frac{1}{1,000,000} \frac{M G}{\mathrm{gal}}=? \\
& 1 \frac{\mathrm{ft}}{\mathrm{sec}} \times 60 \frac{\mathrm{sec}}{\mathrm{~min}} \times 1440 \frac{\mathrm{~min}}{d a y} \times \frac{7.481}{1} \frac{\mathrm{gal}}{\mathrm{ft}^{3}} \times \frac{1}{1,000,000} \frac{M G}{\mathrm{gal}}=0.65 \frac{M G}{d a y} \\
&=0.65 \mathrm{MG}
\end{aligned}
$$

Average Annual Daily Flow

43

44

Detention Time

- The time water or effluent stays in a given reservoir or treatment process

45

What's going on in there?

A primary sedimentation example

Primary Sedimentation

What's the purpose: Removal of readily settleable solids, reducing suspended solids content in the effluent.

How is it happening: water velocity is
slowed so small particles have time to
clump together and sink. Flocculants may be added to aid and speed the process.

Effluent: Cleaner effluent flows out of a weir at the surface
Solids: sink to the bottom of the tank and are removed mechanically

47

49

Primary Sedimentation Removal
Rate
Our formula: $\quad R=\frac{t}{a+b t}$

$R=$ expected removal efficiency (\%) $t=$ nominal detention time $a, b=$ empirical removal constants
Item a b $R(B O D)=\frac{2.42 \mathrm{hrs}}{0.018+(0.020 \times 2.42 \mathrm{hrs})}$ BOD 0.018 0.020 $R(B O D)=\frac{2.42}{0.0664}$ TSS 0.0075 0.014 $R(B O D)=36 \%$

50

Quick Note: Temperature Impacts Required Detention Time

Colder temperatures tend to slow processes

52

54

Primary Removal Rate

 Our formula: $\quad R=\frac{t}{a+b t}$2.42 hrs
$\begin{aligned} & R=\text { expected removal efficiency }(\%) \\ & t=\text { nominal detention time }\end{aligned} \quad R(T S S)=\frac{2.42 \mathrm{hrs}}{0.0075+(0.014 \times 2.42 \mathrm{hrs})}$
$a=$ nominal detention time

Item	a	b
BOD	0.018	0.020
TSS	$\mathbf{0 . 0 0 7 5}$	$\mathbf{0 . 0 1 4}$

$R(T S S)=\frac{2.42}{0.04138}$
$R(T S S)=58 \%$

51

53

55

56

58

57

59

60

