Ops Cert: Chlorine Dosage, Breakpoint Chlorination, and Disinfection Math
Thursday, April 13, 2023
A.J. Barney

Operator Certification

- Certification programs are regulated by the states
- Texas- TCEQ, New Mexico- NMED, Oklahoma- ODEQ
- Certification levels (1-4, D-A, etc.)
- Complexity of the system
- Population
- Experience
- Available resources
- California State University, Sacramento- Wastewater operation manuals
- State distributed resources and need to know lists
- Certification exam- Study!!

Overview

- Important math terms
- Chlorine disinfection
- Chlorine chemistry
- Chlorine dosage
- Chlorine loading
- Breakpoint chlorination
- Ozone math
- UV math
- Exposure

Important Math Terms

$$
\begin{gathered}
\frac{m g}{L}=\text { milligrams per liter }=1 \mathrm{ppm} \\
M G D=\text { million gallons per day }=\frac{10^{6} \mathrm{gal}}{\text { day }} \\
1 \%=10,000 \mathrm{mg} / \mathrm{L}
\end{gathered}
$$

What is Chlorine Disinfection?

```
Chlorine disinfection is the destruction of all pathogenic
microorganisms using chlorine gas, powder, or liquid bleach.
The goal of disinfection is to remove all disease causing pathogens before effluent is discharged into receiving waters
- Prevents the spread of disease by protecting public water supplies, irrigation, receiving waters for recreational uses and shellfish growing areas
Sterilization- is the destruction of all microorganisms, but is impractical
```


Chlorine Chemistry

Chlorine is applied to wastewater as free chlorine $\left(\mathrm{Cl}_{2}\right)$, hypochlorite (OCl^{-}), or chlorine dioxide $\left(\mathrm{ClO}_{2}\right)$.

$$
\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HOCl}+\mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

$2 \mathrm{NaOCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{HOCl}+\mathrm{OCl}^{-}+\mathrm{H}^{+}$

$$
2 \mathrm{ClO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ClO}_{3}^{-}+\mathrm{ClO}_{2}^{-}+2 \mathrm{H}^{+}
$$

Chlorine Chemistry

Liquid bleach (sodium hypochlorite) can be generated onsite. Brine is created by combining water and salt and ran through an electric cell.

$$
\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+2 e \leftrightarrow \mathrm{NaOCl}+\mathrm{H}_{2}
$$

Chlorine Chemistry

Chloramines are weaker disinfectants than hypochlorous acid, but are much longer lasting and form readily in the process of ammonia.

Monochloramines

$$
\mathrm{NH}_{3}+\mathrm{HOCl} \rightarrow \mathrm{NH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

Dichloramines
Trichloramines
$\mathrm{NH}_{2} \mathrm{Cl}+\mathrm{HOCl} \rightarrow \mathrm{NHCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NHCl}_{2}+\mathrm{HOCl} \rightarrow \mathrm{NCl}_{3}+\mathrm{H}_{2} \mathrm{O}$

Chlorine Requirements

Chlorine Dosage- Amount of Chlorine added to water. Calculated by dividing the chlorine feed by the flow or volume

Chlorine Demand- Amount of Chlorine required to act with all reactive substances in the flow

Chlorine residual- Remaining Chlorine in the water after demand has been satisfied

Chlorine Requirements

1) Chlorine Dosage $=$ Chlorine Demand + Chlorine Residual
2) Residual = Dosage - Demand

Residual composed of free Chlorine and combined Chlorine

Dosage Practice Problems

$$
\text { Chlorine Dosage }=\text { Chlorine Demand }+ \text { Chlorine Residual }
$$

Determine the chlorine demand of a treated wastewater effluent if the chlorine dosage used for disinfection is $8 \mathrm{mg} / \mathrm{L}$ and the measured chlorine residual is $1.3 \mathrm{mg} / \mathrm{L}$.

[^0]
Solution Strength

HTH $=3-12 \%$ available chlorine
Liquid bleach $=65-70 \%$ available Chlorine
Solution Strength $(\%)=$ Solution Strength $($ decimal $) \times 100 \%$

Solution Strength $($ decimal $)=\frac{\text { Solution Strength (\%) }}{100 \%}$

Solution Strength

$$
\text { Solution Strength }(\text { decimal })=\frac{\text { Solution Strength (\%) }}{100 \%}
$$

Your wastewater treatment plant uses a 4% solution to disinfect treated wastewater. What is the strength of the solution expressed as a decimal?

Solution Strength

Solution Strength

Solution Strength $($ decimal $)=\frac{\text { Solution Strength }(\%)}{100 \%}$
Givens:
Solution Strength $($ decimal $)=\frac{\text { Solution Strength (\%) }}{100 \%}$

Solution Strength $=4 \%$
Solution Strength $($ decimal $)=\frac{4 \%}{100 \%}$

Solution Strength

Solution Strength $($ decimal $)=\frac{\text { Solution Strength (\%) }}{100 \%}$
Solve:

$$
\text { Solution Strength }(\text { decimal })=\frac{4 \%}{100 \%}=.04
$$

Practice Problem

Solution Strength (decimal) $=\frac{\text { Solution Strength (\%) }}{100 \%}$
Your wastewater treatment plant has decided to increase the strength of their chlorine solution to 8.5% to reduce the energy required for disinfection treatment. What is the strength of this solution expressed as a decimal?

Chlorine Dosage

$$
\begin{gathered}
\text { Chlorine Dosage }\left(\frac{m g}{L}\right)=\frac{\text { Chlorine Feed }\left(\frac{l b s}{\text { day }}\right)}{\text { Flow }(M G D) \times 8.34 \frac{\text { lbs }}{\text { gallon }}} \\
\text { Chlorine Dosage }\left(\frac{m g}{L}\right)=\frac{\text { Chlorine Feed }\left(\frac{l b s}{\text { day }}\right) \times \text { Cl solution strenth }}{\text { Flow }(M G D) \times 8.34 \frac{\text { lbs }}{\text { gallon }}}
\end{gathered}
$$

Chlorine Dosage Practice Problem

$$
\text { Chlorine Dosage }\left(\frac{m g}{L}\right)=\frac{\text { Chlorine Feed }\left(\frac{l b s}{d a y}\right) \times C l \text { solution strenth }}{\text { Flow }(M G D) \times 8.34 \frac{l b s}{\text { gallon }}}
$$

A chlorinator is set to feed $417 \mathrm{lbs} /$ day of 12% chlorine bleach to treat a flow of 2 MGD. What will be the resulting chlorine dosage in mg / L ?

Chlorine Dosage Practice Problem

A chlorinator is set to feed $417 \mathrm{lbs} /$ day of 12% chlorine bleach to treat a flow of 2 MGD. What will be the resulting chlorine dosage in mg / L ?

Givens:

Chlorine Feed = 417 lbs/day

Cl Solution Strength $=12 \%$

Flow = 2 MGD

Chlorine Dosage Practice Problem

Chlorine Dosage $\left(\frac{\mathrm{mg}}{\mathrm{L}}\right)=\frac{\text { Chlorine Feed }\left(\frac{l b s}{\text { day }}\right) \times \text { Cl solution strenth }}{\text { Flow }(M G D) \times 8.34 \frac{\text { lbs }}{\text { gallon }}}$

Solution Strength $($ decimal $)=\frac{\text { Solution Strength (\%) }}{100 \%}$
Set up the equation:

$$
\text { Chlorine Dosage }\left(\frac{\mathrm{mg}}{\mathrm{~L}}\right)=\frac{417 \frac{\mathrm{lbs}}{\mathrm{day}} \times .12}{2 \frac{\text { million gallons }}{\text { day }} \times 8.34 \frac{\mathrm{lbs}}{\text { gallon }}}
$$

Chlorine Dosage Practice Problem
Chlorine Dosage $\left(\frac{\mathrm{mg}}{\mathrm{L}}\right)=\frac{\text { Chlorine Feed }\left(\frac{l b s}{\text { day }}\right) \times \text { Cl solution strenth }}{\text { Flow }(M G D) \times 8.34 \frac{\text { lbs }}{\text { gallon }}}$
Solve:
Chlorine Dosage $\left(\frac{\mathrm{mg}}{\mathrm{L}}\right)=\frac{417 \frac{\mathrm{lbs}}{\text { day }} \times .12}{2 \frac{\text { million gallons }}{\text { day }} \times 8.34 \frac{\mathrm{lbs}}{\text { gallon }}}=3 \mathrm{ppm}=3 \frac{\mathrm{mg}}{\mathrm{L}}$

Chlorine Dosage Practice Problem

A change in operations requires the minimum chlorine dosage to be increased to $3.5 \mathrm{mg} / \mathrm{L}$. Plant management has decided to increase the feed rate from $417 \mathrm{lbs} /$ day to $500 \mathrm{lbs} / \mathrm{day}$. Will this increase allow the plant to meet the minimum dosing requirement?
Previous givens: Strength $=12 \% \quad$ Flow $=2$ MGD

$$
\text { Chlorine Dosage }\left(\frac{m g}{L}\right)=\frac{\text { Chlorine Feed }\left(\frac{l b s}{d a y}\right) \times C l \text { solution strenth }}{\text { Flow }(M G D) \times 8.34 \frac{\text { lbs }}{\text { gallon }}}
$$

$$
\text { Solution Strength }(\text { decimal })=\frac{\text { Solution Strength }(\%)}{100 \%}
$$

Chlorine Loading/ Feed Rate

Breakpoint Chlorination

$$
\text { Chlorine Feed }\left(\frac{l b s}{d a y}\right)=\text { Chlorine Dosage }\left(\frac{m g}{L}\right) \times F l o w ~(M G D) \times 8.34 \frac{l b s}{\text { gallon }}
$$

Chlorine Feed $\left(\frac{l b s}{d a y}\right)=$ Chlorine Dosage $\left(\frac{m g}{L}\right) \times F l o w(M G D) \times 8.34 \frac{l b s}{\text { gallon }} \times C l$ solution strength

Breakpoint Chlorination Practice Problems

At what point is the combined residual the highest?
What is the approximate Free chlorine residual at point D?

Dechlorination

- Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is used to dechlorinate treated wastewater
- SO_{2} has a similar molecular weight to Cl_{2} and can be used at almost a 1 to 1 ratio for dichlorination
- A safety factor of $3 \mathrm{mg} / \mathrm{L}$ is often initially used for a sulfonator setting when sulfur dosing is used for dechlorination

Sulfur Loading/ Feed Rate Practice

Sulfur Feed Rate $\left(\frac{l b s}{\text { day }}\right)=($ Chlorine Residual + Safety Factor $)\left(\frac{m g}{L}\right) \times F l o w ~(M G D) \times 8.34 \frac{l b s}{\text { gallon }}$

A wastewater treatment plant with a 2 MGD flow has an average chlorine residual of $4.5 \mathrm{mg} / \mathrm{L}$ after disinfection treatment. What is the sulfur feed rate required to properly dechlorinate the wastewater, if a safety factor of $3 \mathrm{mg} / \mathrm{L}$ is desired?

Sulfur Sample Problem

A wastewater treatment plant with a 2 MGD flow has an average chlorine residual of $4.5 \mathrm{mg} / \mathrm{L}$ after disinfection treatment. What is the sulfur feed rate to properly dechlorinate the wastewater, if a safety factor of $3 \mathrm{mg} / \mathrm{L}$ is desired?

Givens:
Chlorine Dosage $=4.5 \mathrm{mg} / \mathrm{L}$
Safety Facto $r=3 \mathrm{mg} / \mathrm{L}$
Flow $=2$ MGD

Sulfur Sample Problem

Sulfur Feed Rate $\left(\frac{l b s}{\text { day }}\right)=($ Chlorine Residual + Safety Factor $)\left(\frac{m g}{L}\right) \times F l o w(M G D) \times 8.34 \frac{l b s}{\text { gallon }}$
Set up:

$$
\begin{gathered}
\text { Sulfur Feed Rate }\left(\frac{l b s}{d a y}\right)=(4.5+3)\left(\frac{m g}{L}\right) \times 2(M G D) \times 8.34 \frac{l b s}{g a l} \\
=(7.5)\left(\frac{m g}{L}\right) \times 2 \frac{M G}{d a y} \times 8.34 \frac{l b s}{g a l}
\end{gathered}
$$

Sulfur Sample Problem

Solve:

Sulfur Feed Rate $\left(\frac{l b s}{d a y}\right)=(7.5)\left(\frac{m g}{L}\right) \times 2 \frac{M \text { gal }}{d a y} \times 8.34 \frac{l b s}{g a t}$
Sulfur Feed Rate $\left(\frac{l b s}{d a y}\right)=(7.5)(p p m) \times 2 \frac{M \operatorname{gal}}{d a y} \times 8.34 \frac{l b s}{g a t}$

$$
=125 \frac{l b s}{d a y}
$$

Sulfur Practice Problem

Sulfur Feed Rate $\left(\frac{l b s}{d a y}\right)=($ Chlorine Residual + Safety Factor $)\left(\frac{m g}{L}\right) \times F l o w(M G D) \times 8.34 \frac{l b s}{\text { gallon }}$

Another wastewater treatment plant with a 3 MGD flow and an average chlorine residual of $2 \mathrm{mg} / \mathrm{L}$ has been operating with a safety factor of $1 \mathrm{mg} / \mathrm{L}$. What is the required sulfur feed rate need for the desired dechlorination?

Ozone $\left(O_{3}\right)$ Disinfection

Ozone is a powerful oxidizing agent and destroys virus more effectively than chlorine.
Typical ozone math examples:

- Calculating the ozone demand
- Dosage

Ozone Dose $\left(\frac{\mathrm{mg}}{\mathrm{L}}\right)=\frac{\text { gas flowrate }\left(\frac{\mathrm{L}}{\mathrm{min}}\right)}{\text { liquid flowrate }\left(\frac{L}{\mathrm{~min}}\right)} \times\left(\mathrm{Conc.ofO}_{3}\right.$ in feed gas $\left(\frac{\mathrm{mg}}{\mathrm{L}}\right)-$ Conc.ofO O_{3} in off $\left.-\operatorname{gas}\left(\frac{\mathrm{mg}}{\mathrm{L}}\right)\right)$

UV lamps produce UV radiation with a wavelength = 254 nm
UV Dosage $\left(\frac{\mathrm{mJ}}{\mathrm{cm}^{2}}\right)=U V$ Intensity $\left(\frac{\mathrm{mW}}{\mathrm{cm}^{2}}\right) \times$ Retention Time (s)
UV Channel Volume perBank $\left(f t^{3}\right)$
$=$ Width $(f t) \times$ Water Depth $(f t) \times$ Lamp Arc Length $(f t)$

$$
\text { Retention Time per Bank }(\mathrm{s})=\frac{\text { Channel Volume }\left(f t^{3}\right)}{\text { Flow Rate }\left(\frac{f t^{3}}{s}\right)}
$$

Final Poll Problems

A wastewater treatment plant with a flow of 15 MGD has determined that their disinfection process has a chlorine demand of $4.3 \mathrm{mg} / \mathrm{L}$. Their NPDES permit requires that they maintain a chlorine residual of $1.5 \mathrm{mg} / \mathrm{L}$. What must the minimum solution strength of their chlorine solution (as a percentage) be if the maximum feed rate of their equipment is 475 ?

What is the most likely form of chlorine that the WWTP will use?

CONTACT INFORMATION

A.J. Barney:

James Markham:

Department of Civil Engineering MSC01 1070 1 University of New Mexico
Albuquerque, NM 87131
505-277-0644
swefc@unm.edu
http://swefc.unm.edu

[^0]: - Free Chlorine- unreacted Chlorine reacts with H 2 O to form hypochlorous and hydrochloric acid
 - Combined Chlorine- In the presence of ammonia, hypochlorous acid forms chloramines

