BASIC WATER MATH FOR UTILITY OPERATOR CERTIFICATION

Smart Management for Small Water Systems

SOUTHWEST ENVIRONMENTAL FINANCE CENTER

Why Care About Water Math?

Water Operator Certification

: WATER MATH

 Part of the water utility operator certification exam

 Level of math varies with type of exam and level of certification:

Lower levels – may require less math
 Exam type e.g. water treatment exam – more advanced math

Tips for solving math problems

- Draw sketches visualize the problem
- Familiarize yourself with the formula sheet before the exam
- Pay attention to the units
- Practice! Practice! Practice!

Water Math – Terms, Definitions & Measurements

Familiarize yourself with:

- Square feet = (ft²)
- Cubic feet = (ft³)
- Cubic ft per sec = ft^3/s or CFS
- Acre feet = (aft)
- Gallons per acre foot = gal/ac ft
- Inches per foot = in/ft
- Mile = mi
- Feet per mile = ft/mi

Water Math – Terms, Definitions & Measurements

Familiarize yourself with:

- Gallons per cubic ft = gal/cu ft
- Pounds per gallon = lbs/gal
- Pounds per square inch = psi
- Gallons per day = gpd
- Gallons per minute = gpm
- Million Gallons = MG
- Million Gallons per day = MGD

Water Math

Formula Sheets

 Most programs allow formula sheets during testing

Example

ABC & C₂EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams

Alkalinity, as mg CaCO₃/L = $\frac{(\text{Titrant Volume, mL})(\text{Acid Normality})(50,000)}{\text{Sample Volume, mL}}$ Amps = $\frac{\text{Volts}}{\text{Ohms}}$ *Area of Circle = (.785) (Diameter²) = (π) (Radius²) Area of Cone (lateral area) = (π) (Radius) $\sqrt{\text{Radius}^2 + \text{Height}^2}$ Area of Cone (total surface area) = (π) (Radius) (Radius + $\sqrt{\text{Radius}^2 + \text{Height}^2}$) Area of Cylinder (total exterior surface area) = [Surface Area of End #1] + [Surface Area of End #2] + [(\pi) (Diameter) (Height or Depth)] *Area of Rectangle = (Length) (Width) *Area of a Right Triangle = $\frac{(\text{Base})(\text{Height})}{2}$

Formula Sheet

Your units must match the units in the pie wheel

Quick Tip: Avoid making common mistakes with your units

Water Math

Topics To Cover

- Averages
- Fractions and Percents
- Area
- Volume
- Conversions
- Water Pressure Head
- Flow and Velocity
- Dosage Calculations

Basic Wath Concepts					
Concept	Definition/Keywords	Example			
Exponents	A number that is multiplied by itself, a specified number of timesThe power of a number	Exponent $3^2 = 3 \times 3 = 9$ Base 2 threes			
Square Roots	A number that gives the original value when multiplied by itself.Opposite of an exponent	$\sqrt{4}=2$ (2 × 2 = 4)			
Averages (Mean)	 All values in a set are added together (summed up) The sum is divided by the number of values in the set 	1, 2, 3, 6 1+2+3+6=12 12÷4=3			

-

Averages

Q: On Monday at 8:00 am the reading on the master meter was 1,523,951 gals. On Thursday at 8:00 am the meter read 2,859,230 gals. What was the average daily consumption during this time?

Fractions

- Part of a whole number
- Top number = Numerator
- Bottom number = Denominator

Note: All whole numbers have a denominator of '1', that is not always written out e.g. 5 = 5/1

Percents

- Percents are fractions where the denominator (bottom) is equal to 100
- Applied to water math in different areas
 e.g. hypochlorite solutions
 ➢ 65%, 12.5% or 100%
- Percents can be converted into fractions and vice versa

<u>Numerator</u> Denominator $\frac{1}{100} = 1\%$

Percents and Decimals

• To change a percent into a decimal: drop the % and divide the number by 100 :

65% = 65/100 = 0.65

• To change a decimal to a percent: multiply the decimal by 100 and add a %

0.12 x 100 = 12%

ORDER OF OPERATIONS

A rule that tells you the sequence to follow when solving math problems

• Please (Parentheses)

• Excuse (Exponents)

• My Dear (Multiply or Divide)

• Aunt Sally (Add or Subtract)

Volumes - Cylinders

Water Pipes

Applications
Storage tanks & reservoirs

• Pipes

• Wells (bore hole)

(Part B) **Q:** Calculate the Volume in gallons: **Convert ft³ to gallons** 40 ft Quick Tip: There is $V = 37,680 \text{ ft}^3$ always more **Conversion Factor:** gallons than ft³ 1 ft³ = 7.48 gallons 30 ft 1 ft³ = 7.48 gallons $37,680 \text{ ft}^3 = ?$ = <u>37,680 ft³ X 7.48 gallons</u> 1 ft³ = 281, 846.4 gallons Rounding up... Volume = 282,000 gallons

Volumes - Rectangles

Applications:

- Rectangular storage tanks
- Fill dirt and excavations
- Units: ft³, yd³

Volumes of Rectangles

Q: How many cubic yards of dirt must be ordered to fill in a trench of dimensions: L = 400 ft; W = 4 ft; D = 3 ft.

Water Pressure

- Pressure is a force per unit area
- Usually measured in pounds per square inch (PSI)
- Useful in managing water storage tanks (conversion: ft of water to psi and vice versa)
- Maintain a meaningful range based on your water system

• Too low:

- Water backflow contamination concern
- Lack of firefighting capacity
- Customer complaints
- Too high:
- Water main breaks
- Increased turbidity: a contamination concern
- Customer complaints

Water Pressure

Water Pressure Head

 When considering pressure in a water column, the <u>column height</u> is what matters (hydraulic head)

Pressure and Water Tanks

Q: How much water is in the tank if the pressure reading at the first customer by the base of the hill is 30psi?

Flow & Velocity

Flow = Area (cross-sectional) x Velocity

Flow (ft³/sec) = Area (ft²) x Velocity (ft/sec)

Don't confuse flow and velocity!

Q: Calculate the flow of water in a 6" pipe with a velocity of 10 ft/sec

Vel = 10 ft/sec

12" = 1ft 6" = 12/6 = 0.5 ft

Area = πR^2

Area = $3.14 \times (0.25 \text{ft} \times 0.25 \text{ft})$ Area = 0.196 ft^2 Flow (ft³/sec) = Area (ft²) x Velocity (ft/sec)

Flow (ft³/sec) = 0.196 ft² x 10 ft/sec

Flow (ft³/sec) = 1.96 ft^3 /sec

Rounding up...

$$Flow = 2.0 \text{ ft}^{3}/\text{sec} (CFS)$$

Important Chlorine Dosage & Feed Rate Formulas

1) Dosage, mg/l = (Demand, mg/l) + (Residual, mg/l)

2) Gas Cl_2 (lbs) = (Vol, MG) x (Dosage, mgl) x (8.34 lbs/gal)

3) HTH/Solid Cl₂ (lbs) = <u>(Vol, MG) x (Dosage, mg/l) x (8.34 lbs/gal)</u> (Decimal % Strength)

4) Liquid Cl_2 (lbs) = (Vol, MG) x (Dosage, mg/l) x (8.34lbs/gal) (Decimal % Strength)

Chlorine Dosage

1) Dosage, (mg/l) = Demand, (mg/l) + Residual, (mg/l) (What you add) (What is used up) (What remains)

This equation can be re-arranged to solve for any of the three parameters. Isolate the unknown.

Understand this formula, because it is not always given on some formula sheets!

Chlorine Dosage

Q: Calculate the residual chlorine if the demand is 2.0 mg/L and the dosage is 2.8 mg/L

What do we have? Demand = 2.0 mg/L Dosage = 2.8 mg/L

Dosage = Demand + Residual

Isolate the unknown

Dosage - Demand = Demand + Residual - Demand

Residual = Dosage – Demand

Residual = Dosage – Demand

Residual = 2.8 mg/l - 2.0 mg/L

Residual = 0.8 mg/L

Chemical Feed Rate & Dosage

a) Pie Wheel

b) Equation

Feed Rate (lbs/d) = Flow (MGD) x Dose (mg/L) x 8.34 lbs/gal

*This formula can apply to any water added chemical e.g. Fl, Cl₂ etc

Chlorine Strengths

Gas Chlorine = 100% Strength

Solid Chlorine = ~65% Strength (Calcium Hypochlorite or HTH) Decimal: 0.65

Liquid Chlorine = ~10 - 12.5% Strength (Sodium Hypochlorite) Decimal: 0.125

Feed & Dosage

Q: How many lbs of Calcium Hypochlorite (HTH) should be used to treat a 700,000 gallon tank to get a residual Cl₂ of 1.5mg/L, when the demand is 2.6mg/L?

```
Dosage = Demand + Residual
Dosage = 2.6mg/L + 1.5mg/L
Dosage = 4.1 mg/L
Volume = 700,000 (0.7MG)
CL_2 (HTH) = 65\% (0.65)
```

Feed Cl ₂ (lbs) =	(Vol, MG) x (Do (Decim	osage, mg/l) x al % Strength	<u>(8.34 lbs/gal)</u>)	
Feed Cl ₂ (lbs)	= <u>(0.7MG) x (4</u> (65/1	.1 mg/l) x (8.3	34 lbs/gal)	
Feed Cl ₂ (lbs) = <u>(0.7MG) x (4.1 mg/l) x (8.34 lbs/gal)</u> (0.65)				
	= 36.8 lbs			
Rounding up		37 lbs		34

Questions?

SOUTHWEST ENVIRONMENTAL FINANCE CENTER

http://southwestefc.unm.edu/

swefc@unm.edu

www.efcnetwork.org