

Understanding Criticality: Reduce Risk & Optimize Operations

July 24, 2018 | Webinar

Nicholas Willis, Program Manager

Wichita State University, Environmental Finance Center

Asset Management

 Asset management is maintaining a desired level of service for what you want your assets to provide at the lowest life-cycle cost. Lowest life-cycle cost refers to the best appropriate cost for rehabilitating, repairing or replacing an asset.

US EPA

Asset Management Overview

- Five core components
- All interact/overlap
- All important
- Asset Management Planning Strongly Encouraged

Criticality Overview

- Criticality assesses risk
 - Probability of Failure
 - Consequence of Failure
- Criticality = probability * consequence

Focus on level of service & compliance

A few words about risk

Ever-present

 Even new infrastructure is a balance of risk of failure vs. costs & other constraints

Risk cannot be eliminated

Can be reduced/planned for

Criticality - Graphically

Medium High Risk Risk Medium Low Risk Risk

Probability of Failure

Failure

How have assets failed in past?

How can assets fail in the future?

What can reduce the probability of failures?

Probability of Failure

- Failure does not mean "broken"
- Answer: "How can this asset fail to deliver what it is intended to deliver?"
- Examples
 - Environmental Changes
 - Regulatory Changes
 - Capacity Loss/degradation
 - Power Loss
 - Quality or Quantity declines
 - Interaction with Community

Environmental Changes

Common occurrence in many small water supplies

Previously compliant water source is polluted

Nitrates

Blue green algae

Regulatory Changes

Maximum Contaminant Level 2018 = 50

Maximum Contaminant Level 2025 = 5

Your treated water = 25

 Attempt to ensure new infrastructure meets potentially lower limits

Capacity Loss/Degradation

- Equipment no longer performs as designed
 - Often slow-moving problem
- Pipe tuberculation
- Pump wear
- Well screen clogging
- Slow meters

Image from Echologics

Power Loss

- Electrical power can fail
- Site-specific options
 - Do nothing
 - Second power feed
 - Backup generation

Image from eBay

- Backup generators
 - Mobile move between various facilities
 - Permanent
 - Run all equipment or partial

Quality or Quantity Declines

- Declining water tables
 - Decreased pumping rates
 - Increased salt content

- Surface water changes
 - Taste & Odor
 - Salt levels
 - pH
 - Turbidity

Interaction with Community

- Systems can be both over & undersized, leading to failures
- Growing population
 - May not meet water demands
- Shrinking population
 - May have stagnant water
 - May not meet financial goals/policies
- Economic & technological changes
 - Growth/decline industrial & commercial use
 - Most uses are getting more efficient

Redundancies

- Redundant (Oxford Dictionaries):
 - "able to be omitted without loss of meaning or function"
 - "(of a component) not strictly necessary to functioning but included in case of failure in another component."

Is not only "like for like"

Partial Redundancies

- Recognize if repetitive equipment is fully or partially redundant
- Unknown if top picture is fully redundant
- Bottom may be partially redundant (may not meet service levels at all times).
 - Are all pumps the same capacity?
 - What is required for peak flows?

Partial Redundancies

- Generally
 - Limit maximum capacities
 - i.e., 1 million gallon/day drops to 600,000 gal/day
 - May meet average demands
 - Plan response for failure in peak demand
 - i.e. customer communication no irrigation
 - Leave no or little redundancy after first failure
 - Full redundancy may be economically unfeasible

Non "like for like" redundancy

 Complex water systems may have numerous redundancies that are not like for like

• Examples:

- Emergency supply interconnects
- Elevated storage backs up pumping units
- "straight pipe" replaces broken meter
- "Hand" operation on control system
- Raw water supplies with varying quality

Criticality – Graphically with redundancy

Probability of Failure

Using Criticality to Inform Maintenance

General theory

• Investment of time, resources, money & thought should be guided by criticality of utility's assets

Rethink how things have been done

Criticality & Maintenance

Maintenance Important 30% of budget

Maintenance
Extremely Important
45% of budget

Maintenance Less
Important
5% of budget

Maintenance Important 20% of budget

Criticality & Maintenance in Practice

- Valve exercise
 - If less than recommended 1x/yr, have more frequent exercise on critical valves, less frequent on non-critical valves
 - Balance with:
 - Known condition
 - Outright replacement if problematic
 - Known end-life
 - Exercising nearby valves while there

Criticality & Maintenance in Practice

- Lubricated items
 - May not need frequent/scheduled lubricant replacement
- Balance
 - Value of frequent visits
 - Labor costs
 - Time spent on assets with known end-life
- Consider testing of lubricants in:
 - Equipment with large volumes and/or high price
 - Equipment difficult/dangerous to service

Criticality & Maintenance

- Whole system
 - Generally lack maintenance dollars & time
 - In aggregate maintenance of most critical assets, not most critical pump/valve, etc. is important
 - Determine where maintenance is likely to:
 - Reduce lifecycle costs to utility
 - Detect future problems
 - Improve emergency response
 - Increase knowledge of system
 - Maintain desired level of service

Thank you for participating today. We hope to see you at a future workshop!

www.efcnetwork.org

