Financial Capacity Development

The utility has financial resources to supply safe drinking water in short and long term.

- Short Term pay staff, utilities, repairs, leases, contractors, debt, etc.
- Long Term finance expansion of facilities, major equipment replacements, retain staff, ensure adequate water supplies, etc.

Part 3 – Financial Capacity Overview

Indicators of Financial Capacity

Adequate and Protected Financial Resources

- Budgets
- Rates & Revenue
- Financial Controls
- Audits
- Credit access

Planning for the Expenses of the Future

- Capital Improvements
- Expenditures
- Revenue meets expenses
- Reserves
- Regulatory changes

Fiduciary Duty

A system's financial capacity is critical to the health & well-being of individuals and the community

Board members are fiduciaries

Always act for the benefit of customers/public

Budgets & Budgeting

- Yearly Plan
- Looks to the past
- Projects the future
- Determines priorities
- Staff does legwork
 - Board's role is review & approval

Budgeting Tips for Water Utilities

Remember

- Water use (and revenue) change from year to year
- Suppliers have good knowledge of future costs
- Keep an eye on events of significant users

Always

- Use several past years
- Include major changes
- Include periodic events
- Budget based on necessary expenditures
 - Not projected revenue

Operational

- 3-6 months expenditures
- Smooths cash flow
- Allows for rainy days

Allows to absorb higher than expected costs or show fall in revenue

Repair/Replacement

- Based on schedule
- Varies year-to-year
- Savings account for high priced items that are too cheap for debt
 - High Service Pumps
 - Tower maintenance
 - Well servicing

Debt Services

- Required by lender
- Reduces interest costs

Emergency

- Covers unexpected costs
- Minimum of current cost of most expensive capital item not in inventory

Capital Improvement Planning

What makes something a capital improvement vs. a regular maintenance or repair?

Maintenance & Repair

Capital improvement

Reasons for Capital Improvement Planning

- Meeting regulatory requirements
- Proactive not reactive
- Inform future decision makers
- Establishes priorities for public review

- Funding institutions see system thinks long-term
- Not binding, unlike annual budgets

Tips for Capital Improvement Planning

- Set arbitrary minimum price for asset
- Stay realistic
- Five year minimum
- Justify need
- Coordinate with other projects
- Look at broad options
- Detail funding options
- Discuss openly

Capital Improvement Reserves

- Necessary to pay upfront costs
 - Engineering, land, surveys, legal, etc.
- Informed by Capital Improvement Plan
- Use reduces debt burden
- Reserve fund most likely to have large swings in value
- Best practice transfer most depreciation expense to this fund

Rates & Revenue Sufficiency

Cornerstone of a well-run water utility

Critical to measure and know all costs & expenses

System expenses should be covered by rates and fees

True cost of service should be reflected

Income – Revenue

Impacted by

Number of customers Minimum monthly fees

Water Demand

Weather Population growth/decline Business growth/decline Conservation measures

Expenses – Operating Costs

Current Financial Position

Current revenue from all sources minus current expenses (including debt and reserve requirements)

Current expenses <u>exceed</u> current revenues
Means a rate adjustment is needed

➢Expenses <u>equal</u> revenues

If reserves are not adequate, a rate adjustment may be needed

Revenues <u>exceed</u> expenses
Check for adequacy of current reserves

Median Monthly Charges by Region

30

Rates & Rate Setting

Should Be

- Simple to Understand Implement Change when necessary
- Based on expenses
- Set over several years
- Cover full costs Depreciation Transfers to reserves

Should Not Be

Frozen in time

Based upon short-term political desires

Super-complicated

Based upon neighbors

A large source of subsidies to other operations

Comparing Water Rates

Prudent Valley

- Maintains
- Replaces
- Trains
- Plans
- Renews
- Manages
- Sustains
- Higher Rates Now, Lower Overall Costs

Dawdlerville

- Fixes Only
- Delays
- Ignores
- Violates
- Gets by
- Runs out
- Neglects
- Lower Rates Now, Higher Costs Overall

Alternatives to Rate Increases

Contracted Operations

Reduce Costs

Special Fees

Rate Setting Goals

Cover full cost of service

Meet other goals *i.e. water conservation, economic development, etc.*

Simple to administer & understand

Be fair and affordable

Rates study regularly (3-5 yrs)

Educate, be transparent & honest

Let's Discuss

Let's Discuss Rate Structures

What are the benefits and drawbacks of each?

Flat Rate

Promotes high (wasteful) use

Uniform Block Rate

Customers pay for use

Declining Block Rate

Basic Rate + Multiple Declining Step Charges

More complex

Less average revenue per 1,000 gallons as usage grows

Revenues connected to variable expenses

Can be used for economic development

Inclining Black Rate

Basic Rate + Multiple Increasing Step Charges

More complex

More average revenue per 1,000 gallons as usage grows

Revenues connected to variable expenses

Can be used to encourage conservation

Rates Exercise

Financial Controls

Boards adopt ordinances and policies to safeguard system funds

Protect

- Safeguards against theft and fraud⁴
- Separation of duties & bonding

Purchase

- Rules for purchasing day-to-day items
- Rules for purchasing high dollar items
- Rules for hiring of services

Audits

- Examine whether financial statements are accurate & complete
- Independent
 - Not an employee or employee's relation
- Required for most systems:
 - State law
 - Debt covenants

Access to Credit Markets

Why Debt Finance?

- Credit is essential for most systems for large capital projects
- In Kansas, most small systems rely on mix of loans & grants
- Larger systems rely on bond issuance

What Needs to be Done?

- Proper financial management necessary before & after debt issuance
- Debt covenants must be followed
- Rates increases often required

Final Thoughts

- Financial management is continuous
- Long term, short term and credit access
- Understand finances, ask questions & make informed decisions

What financial capacity practices is your utility really good at?

- A. Budgeting
- **B. Capital Improvement Planning**
- C. Rate Setting
- **D. Revenue Sufficiency**
- E. Using Reserves Effectively
- **F. Financial Controls**
- **G.** Audit Process
- H. Using Credit Effectively

What financial capacity practices does your utility need to work on?

- A. Budgeting
- **B. Capital Improvement Planning**
- C. Rate Setting
- **D. Revenue Sufficiency**
- E. Using Reserves Effectively
- F. Financial Controls
- **G.** Audit Process
- H. Using Credit Effectively

Meeting Technical Capacity

Understand Regulations

Operate and Maintain Assets

Understand Treatment and Process

Protect Water Sources and Infrastructure Utility Sustainability Programs

Secure Water Quantity

Maintain Good Records

Proper Certification and Training

Types of Water Systems

GWUDI GWUDI

Surface Water System River, lake, reservoir

Purchase Water System

All have Distribution System

Understand Your System

Role of System Operator

Valuable members of utility

Maintain system

jack of all trades *especially in small systems* repairs, maintenance, testing, trouble shooting

Understanding of the entire treatment process

Understand and comply with regulations

Role of the Board = Support Board Does Not Manage Day-To-Day

- **Fund Maintenance**
- Fund Education and Training
- Acknowledgement
 - Above and Beyond
 - Certification
- **Customer Complaints**
- Tools, Equipment, Software
- Safety Equipment
- Appropriate Salary

Operation & Maintenance Plans

Maintain Assets

Operations

• Activities to keep water flowing

Maintenance

- Routine
- Preventative
- Predictive
- Not emergency

Jre —	Maintenance Important 30% of budget	Maintenance Extremely Important 45% of budget
Consequence of Failu	Maintenance Less Important 5% of budget	Maintenance Important 20% of budget

Probability of Failure

Multiple Barrier Approach

Source Barrier – Keep contamination out Treatment Barrier – Inactivate or remove it Distribution Barrier – Prevent it from re-entering

Source Water Protection Program

It is much less expensive to prevent contamination of source water than it is to treat it after

In 2004 all active public water supply systems completed a Source Water Assessment (SWA) per the 1996 amendments to the Safe Drinking Water Act

Identify all potential sources of contamination and susceptibility

Source Barrier

Protecting drinking water sources usually requires the combined efforts of many partners such as public water systems, state agencies, communities, resource managers and the public

Treatment Barrier

Disinfection

Chlorine, Chloramines, Chlorine dioxide, Ozone, Ultraviolet

Filtration

Surface and GWUDI required by regulations

Additional Treatment

Corrosion inhibitors Lead and copper reduction

Distribution Barrier

Chlorine Residuals

Minimum Pressure

Maintain Water Storage

Cross-Connection Control

Additional Barriers

Regulatory Oversight

Security Measures

- Bioterrorism Act 2002
- Vulnerability, Response Planning

Staff Expertise

Operator Certification

TDEQ administers mandatory water and wastewater operator certification program

By law, it is the responsibility of water supply system **owners** to operate the water system with an appropriately certified operator

Operating without a certified operator is considered an **unlawful act**

Utility Sustainability Programs

Water Loss Control

- Protect water resources
 - Prolong resource
 - Water Conservation
- Minimize disruptions to customers

Energy Efficiency

- Reduced energy cost
- Interrelated to water loss
 - Saving water saves the energy

Increase revenues

Water Loss Control

Non-Revenue Water

Unaccounted for Water

Unbilled authorized uses Unauthorized water uses Data handling errors Water leaking from the system • real water losses

Water Loss Control

A DECK ADDRESS OF

Water Meters

System cash register

- Slow meters reduced revenue
- Must be accurate
- Encourage conservation
 - "No way we used that much water"
- Demand and customer data planning
 - Is your infrastructure adequate?

Regulatory Compliance

Safe Drinking Water Act of 1974

Water System Definition

EPA - "a system for the provision to the public of water for human consumption through pipes or other constructed conveyances, if such a system has at least **fifteen** service connections or regularly serves at least **twenty-five individuals**.

Regulatory Compliance

Types of Public Water Supply System

- **Community**: Year-round residential customers
 - Towns, mobile home parks, rural water districts, subdivisions
- Transient Non-Community: Different non-residential customers every day
 - Motels, parks, airports, campgrounds, truck stops
- Non-Transient Non-Community: Same non-residential customers
 - Schools, daycare facilities, industrial or manufacturing facilities

National Drinking Water Regulations

National **Primary** Drinking Water Regulations

- Legally enforceable standards that apply to public water systems
- Primary standards **protect public health** by limiting the levels of contaminants in drinking water.

National **Secondary** Drinking Water Regulations

- Non-enforceable guidelines regulating contaminants that may cause cosmetic effects or aesthetic effects in drinking water.
- EPA **recommends** secondary standards to water systems but does not require systems to comply.

Numerous Amendments

Maximum Contaminant Level (MCL)

Must be below the line to ride.

Maximum Contaminant

Level

Bacteria Turbidity pH Organics Alkalinity Metals Calcium Chloride Chloride Chlorine Sulfate Nitrate Nitrite Color

The highest level of a contaminant allowed in water that would still potable

Monitoring and Reporting

What monitoring and reporting is required?

- Code of Federal Regulations (40 C.F.R. part 141)
- State Regulations

Each water system is required to take certain samples and keep the records

Based on type of system and population

Record Keeping

All water systems must keep records (3 -12 years)

 \checkmark 3 years – corrective action for violations

- ✓5 years microbiological analyses
- ✓10 years chemical analyses
- ✓12 years lead and copper results

Records can help improve operation and maintenance of system

Public Notification

ESPAÑOL

del agua potable que ustad consume. Por favor traduzcalo, o hable con alguien que lo entienda

2016 Goshen Water Utility

Consumer Confidence Report

KENT HOLDREN, WATER SUPERINTENDENT, (574) 534-5306

Delivering Excellence

Clean and safe drinking water is a top priority for the City of Goshen. To make sure you are well informed about your water, the Goshen Water Uillity provides this annual report that outlines the quality of our drinking water, what it contains, and how its quality compares to Environmental Protection Agency (EPA) and State of Indiana standards.

About our Water

Coshen is committed to provide you with all the information you may want to know about the quality of the water you drink. You can ask questions about water quality at the Coshen Board of Public Works and Safety meeting every Monday at 2 pm. Meetings are conducted at 1111E. Jefferson St. Goshen; N.

All information contained in this report was collected in 2015 and reported in accordance with rules and regulations of the Indiana Department of Environmental Management (IDEM) and the United States Environmental Protection Agency (USEPA).

Our Water Origins The Goshen Water Department has too the Goshen Water Department has too have too the second of the second of the have (1084 K. Fifth 51) has also as wells and but halphynesure pumps that can produce \$9 million gallons of water per day. The have have the second of the second of the have have the second of the second of the have have the second of the second of the have have the second of the second of the have have the second of the second of the have have the second of the second of the have have the second of the second of the have have the second of the second of the have have the second of the second of the have have the second of the second of the have the second

Tier 1	Tier 2	Tier 3	
Potential for serious & immediate health effects	Potential for adverse health effects, but no immediate risk	No direct impact on human health	
24 hrs notice	Within 30 days	Within 12 months	

What technical capacity practices is your utility really good at?

- A. Asset Management
- **B.** Operation & Maintenance Plans
- **C.** Pollution Barriers
- **D. Water Loss Control**
- E. Energy Efficiency
- F. Operator Certification/Training
- G. Monitoring & Reporting
- H. Record Keeping
- I. Accurate Meters

What technical capacity practices does your utility need to work on?

- A. Asset Management
- **B. Operation & Maintenance Plans**
- **C.** Pollution Barriers
- **D. Water Loss Control**
- E. Energy Efficiency
- F. Operator Certification/Training
- G. Monitoring & Reporting
- H. Record Keeping
- I. Accurate Meters

Board Responsibility

Staff Responsibility

Strategic Quality	Resources	Administrative	Standard Operating Procedures	Rules
--------------------------	-----------	----------------	-------------------------------------	-------

Decisions affecting long-term priorities such as mission, institutional direction, values, priority & principals Decisions affecting who are the organization's primary clientele, types of services. delivery systems that focus on the relationship of programs and departments to overall mission

Decisions about planning, budgeting, financing, marketing, and personnel. Budget approval process, setting rates and fees.

Decisions about day to day practices, participation in community activities, selection of contractors, interlocal agreements.

Decisions affecting procedures used to handle routine transactions and normal form, process, method and application of policies.

Decisions and regulations that guide or prescribe everyday conduct

InSummary

Boards set strategic direction, overall vision, major goals

Management defines roles and responsibilities, conducts planning, reviews whether goals are met

Operational Staff carries out day to day tasks to keep system running, ensures compliance with regulations and makes necessary adjustments

Questions

Thank you for participating today, and we hope to see you at a future workshop!

www.efcnetwork.org

