The Water Audit Handbook for Small Drinking Water Systems

Based on the AWWA/IWA Water Audit Method

Smart Management for Small Water Systems

2013

Acknowledgement

Funding for this handbook was provided as part of the Environmental Finance Center Network's Smart Management for Small Water Systems program under a cooperative agreement with the US EPA.

Table of Contents

1 – Introduction	1
2 – Instructions for Using this Handbook	3
3 – Drinking Water System Information	4
4 – System Input Volume	5
5 – Authorized Consumption	10
6 – Water Losses 6.1 – Apparent Losses 6.2 – Real Losses	16 17 23
7 – Non-Revenue Water	28
8 – Water Audit Data Summary Table	29
9 – Next Steps	30
10 – References	31

1 – Introduction

According to the 2011 Drinking Water Infrastructure Needs Survey & Assessment, more than \$247.5 billion is needed over the next 20 years for the replacement or refurbishment of deteriorating transmission and distribution mains at public water systems (PWS) in the United States. This aging infrastructure can be a significant source of water loss in a system. Since water is considered a commodity that is produced by a PWS, the loss of this water is directly connected to a loss of revenue for the system. As water system infrastructure continues to age and as drought throughout the United States continues to stretch water resources, a water loss control program becomes critical. Water loss control programs have the possibility of deferring, reducing, or eliminating the need for a PWS to spend resources on repairs. In addition, a water loss control program can protect public health through a reduction in leaks that can compromise the distribution barrier by allowing the entry of pathogens into a water system.

The first step in establishing an effective water loss control program is performing a water audit. The idea of tracking water loss as a percentage of estimated losses over the volume of water supplied was first introduced by the American Water Works Association (AWWA) in 1957. The terms unaccounted-for-water or unaccounted-for-percentage were widely adopted by water utilities in response to this. However, due to differences in how these terms were interpreted and because there was not a verifiable reduction in losses by those that adopted these terms, it has been recommended that they no longer be employed. Instead, it is now recommended to use the term "non-revenue" water and to employ the AWWA/International Water Association (IWA) Water Audit Method. The AWWA/IWA Water Audit Method is based on the Water Balance Table shown in Figure 1. By using this table along with the AWWA/IWA methodology, all water loss is accounted for through both apparent losses and real losses and therefore there is no unaccounted-for-water.

This handbook was developed primarily for use by small drinking water systems that serve 10,000 people or less. Its purpose is to simplify the process of using the AWWA/IWA Water Audit by grouping information and data entry into separate sections for System Input Volume, Authorized Consumption and Water Losses. In addition, cost data and the performance indicators that are present in the AWWA/IWA Water Audit are left out to further simplify the process. The grading matrices that are present in the AWWA/IWA Water Audit that allow a Water Audit Data Validity Score to be calculated are instead included in each section as discussions on ways to improve data along with bottom up tools that can be used to improve data quality in each section. Overall, the intended use of this handbook is to start as a top down or paper water audit that allows a system to identify what sorts of bottom up activities should be

The Water Audit Handbook for Small Drinking Water Systems

done in order to verify and improve the accuracy of water loss data associated with their water system. The intent of this handbook is not to replace the complete AWWA/IWA method. In simplifying the AWWA/IWA Water Audit Method, this handbook makes it easier for small systems to begin getting used to Water Audit Method terminology and allows these systems to start the Water Audit process to begin seeing benefits in understanding what happens to the water in their system.

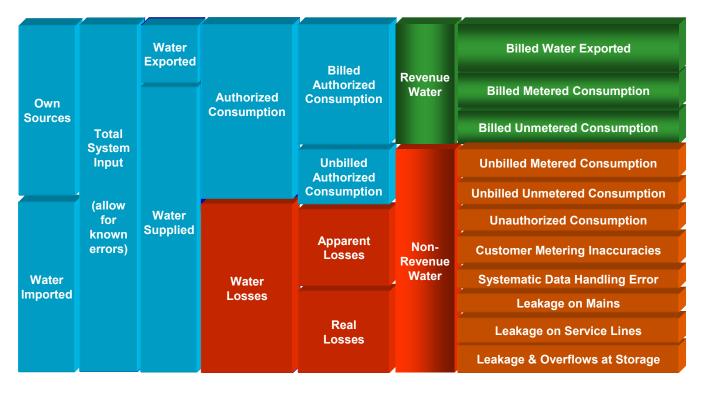
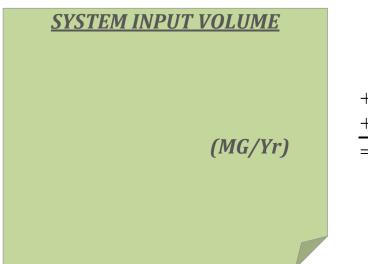


Figure 1the AWWA/IWA Water Balance Table

2 – Instructions for Using this Handbook

This handbook can be used in two different ways. It can be printed and the paper copy can be filled out by hand or it can be used as an Adobe Form and completed electronically. The sections following these instructions require the input of data by the water utility. If the user is doing the data entry using the Adobe Form and a calculation is required, it will be done automatically, and if filling in a paper copy; the user should utilize the formulas given in each section and do the calculations by hand. The user can input data section by section or if it is preferred, all of the water audit data can be input into the Water Audit Data Summary Table on page 29. All volumes should be entered in millions of gallons per year (MG/Yr).

3 – Drinking Water System Information


This section includes general information about the water system. While this information is not required in order to use this handbook, it is information that should be collected and maintained in order to have an effective water loss management program. Further, this information is required in order to calculate some of the Performance Indicators included in the AWWA/IWA Water Audit method.

WATER SYSTEM NAME:	
PWSID:	
WATER SYSTEM ADDRESS:	
AUDIT START DATE:	
AUDIT END DATE:	
CONTACT PERSON NAME:	
TELEPHONE NUMBER:	
E-MAIL:	

LENGTH OF MAINS (miles):	
NUMBER OF ACTIVE & INACTIVE SERVICE CONNECTIONS:	
AVERAGE LENGTH OF CUSTOMER SERVICE LINE (feet):	
AVERAGE OPERATING PRESSURE (PSI):	

4 – System Input Volume

The system input volume is the total amount of water that is supplied to the distribution system. This value can include water produced from the system's own sources as well as water imported from a water wholesaler. The system input volume should be validated and should include an adjustment for master meter errors. The system input volume is the first, and largest value included in a water audit. Enter the system input volume for your system below in millions of gallons per year (MG/Yr).

- Water Produced from Own Sources
- + Water Imported
- +/- Meter Error Adjustment
- = System Input Volume

System Input Volume – Where is your data coming from?

As part of doing a water audit it is important to understand where your information is coming from. Are you just taking a best guess at how much water you are producing and adding into your distribution system because you do not meter? Do you meter the water you produce but your meters are old and you don't know how accurate they are? Or, do you know exactly how much water you produce because your meters are new and you test them regularly to ensure accuracy? Included below is a portion of the Grading Matrix from the Texas Water Development Board's (TWDB) "Water Loss Audit Manual for Texas Utilities". This matrix allows you to determine how reliable the data is that's coming from your system. Data that is acquired using methods on the left side of the table is questionable. Data acquired using methods on the right side of the table is much more valid. Where in the table best describes the data from your system?

No meters; volume quantified by estimates onlyPartially metered; several supply sources metered but not all	Fully metered; no regular testing or calibration of meters	Fully metered; partial testing or electronic calibration; no meters greater than 15 years old	Fully metered; annual electronic calibration and flow testing; no meters greater than 15 years old
--	---	--	---

From TWBD's "Water Loss Audit Manual for Texas Utilities"

System Input Volume – What can you do to improve your data?

Are you happy with the data that makes up your System Input Volume? If you're not, the table below describes activities that can be done at your system to improve the reliability of your data. Activities are arranged from left to right with the activities on the right giving you the best data

Install meters	Complete 100%	Initiate testing of	Reduce age of	No new work;
	metering	meters	meters unless able	standardize
			to prove accuracy	calibration, testing,
			of all old meters	and replacement to
			through flow	ensure this high
			testing	level of service
				continues

From TWBD's "Water Loss Audit Manual for Texas Utilities"

System Input Volume – Tools to help improve data collection

Included on the following pages are some basic tools to help you begin to collect the information you need for a water audit. These tools can either serve as examples, or they can be printed and used directly. The tools to help collect System Input Volume include:

- ➢ Water Supplied Log Sheet page 8
- Master Meter Tracking Form page 9

Water	S	vstem	N	ame.
vv ator	0	stem	TN	anne.

PWSID:

Water Supplied Log Sheet

Month: _____Year: _____

Facility Information

Facility Name:	Facility Type:	
Master Meter Manufacturer	Master Meter Model#:	
Date Meter Installed:	Date/s Meter Tested:	

Date	Time	By (initial)	Meter Reading	Gallons	Comments

The Water Audit Handbook for Small Drinking Water Systems

Water System Name:	PWSID:	
5		

Master Meter Tracking Form

			er Location:	Master Mete
			anufacturer:	Ma
			Model #:	
			Serial #:	
			Size:	
			te Installed:	Dat
		4 4		
Result	Tested By	ethod	Testing M	Date Tested
			er Location:	Master Mete
			anufacturer:	Ма
			Model #:	
			Serial #:	
			Size:	
			te Installed:	Dat
Result	Tested By	ethod	Testing M	Date Tested

5 – Authorized Consumption

Authorized consumption is the water that is used by customers that are known to the water system. It is the sum of billed authorized consumption and unbilled authorized consumption. It also includes water exported and supplied to other water systems. Authorized consumption is a known quantity and includes:

Billed Meter Consumption – Authorized consumption of water that is directly metered and billed to the customer and generates revenue.

Billed Unmetered Consumption – Authorized consumption of water that is not directly metered. Consumption is still billed to the customer based on either an estimate or a flat fee and generates revenue.

Unbilled Metered Consumption – Authorized consumption of water that is metered but is not billed and does not generate revenue. Because this water use is metered, it is accounted for and is not lost from the system. Examples of this type of authorized consumption include water used at municipal facilities including buildings and parks.

Unbilled Unmetered Consumption – Authorized consumption of water that is not metered and is not billed and does not generate revenue. Examples of this type of authorized consumption include water used for flushing and for firefighting.

<u>AUTHORIZED CONS</u>	<u>UMPTION</u>
Billed Metered	(MG/Yr)
Billed Unmetered	(MG/Yr)
Unbilled Metered	(MG/Yr)
Unbilled Unmetered	(MG/Yr)
Total Authorized Cor	nsumption
	(MG/Yr)

Enter the data for authorized consumption at your water system in MG/Yr.

Billed Metered

- + Billed Unmetered
- + Unbilled Metered
- + Unbilled Unmetered
 - Authorized Consumption

Authorized Consumption – Where is your data coming from?

As before with your System Input Volume, you have to understand where your information on Authorized Consumption is coming from. How much of your system is metered? How old are your meters? Have meters ever been tested? Do you utilize automated meter reading? Do you estimate volumes used for flushing or firefighting? Data that is acquired using methods on the left side of the table is questionable. Data acquired using methods on the right side of the table is much more valid. Where in the table best describes the data from your system?

Billed Metered	No consumption data gathered; flat or fixed rate in use only	Manual meter reads and billings; no regular audits of customer billing data	Automated billing system; no annual checks of data	Automated meter reading and billing system; internally checked or checked by third party on less than annual basis	Automated meter reading and billing system audited by third party on annual basis
Billed Unmetered	Estimates of consumption used	Source production meters used to determine consumption; all areas not monitored	Source production meters used to determine consumption; all areas monitored	District meters (each 3,000 or fewer connections) used to determine consumption; No total coverage; rest use production meters	District meters (each covers 3,000 connections or less) throughout system used to determine consumption
Unbilled Metered	No testing; estimates only	Testing only where problems suspected	Systematic testing of all meters; underperforming meters not always replaced	Systematic testing of all meters within at least a five-year cycle; all meters over standards replaced or repaired and retested	Testing of all production meters conducted in year of audit; replacement of all meters outside standard accuracy range
Unbilled Unmetered	Overall estimates throughout system	Partial estimates for some of variables; basic estimates for others	Estimates using formulae (for example, time x gallons per flush) for known events	Partial estimates using test data; other estimates using formulae from known number of events	Estimates using previous metered testing to determine overall estimated values

From TWBD's "Water Loss Audit Manual for Texas Utilities"

Authorized Consumption – What can you do to improve your data?

Are you happy with the data that makes up your Authorized Consumption? If you're not, the table below describes activities that can be done at your system to improve the reliability of your data. Activities are arranged from left to right with the activities on the right giving you the best data

Improvements	Start meter	Develop	Conduct	Conduct third-	Continue and
in quantifying	reading and	computerized	internal checks	party audit of	standardize
volume of	volume-based	billing system;	of billing data;	billed data	program
billed metered	billing; plan	consider	install		1 0
consumption	computerized	automatic meter	automatic meter		
I I I I I I I I I I I I I I I I I I I	billing system	reading	reading		
Improvements	Develop	Improve level	Reduce size of	Reduce size of	Continue and
in quantifying	methods to	of monitoring to	monitored areas	monitored areas	standardize
volume of	meter at a	all areas or	or meter	and standardize	program; all
billed	higher level	consider	unmetered	system analysis,	customers who
unmetered	(production or	metering any	accounts	or meter	can feasibly be
consumption	district level)	unmetered		unmetered	metered are
		accounts		accounts	metered
Improvements	Start testing	Develop	Replace or	Test all meters	No new work;
in quantifying	program and	systematic	repair all non-	annually; repair	standardize
volume of	regular meter	testing program;	standard meters;	or replace all	calibration,
unbilled	readings	consider	install	underperformin	testing, and
metered		automatic meter	automatic meter	g meters	replacement to
consumption		reading	reading		ensure this high
					level of service
					continues
Improvements	Develop	Record number	Conduct test	Conduct test	Change to
in quantifying	estimates for	of events and	studies of	studies on all	metered values;
volume of	various unbilled	develop	defined duration	variables to	use of diffuser
unbilled	metered events;	standard	to determine	determine	to accurately
unmetered	use default of	formula for	actual versus	actual versus	determine
consumption	1.25% of input	calculating	estimated	estimated	flushing volume
	volume; change	volume, or	volumes, or	volumes, or	
	to metered	change to	change to	change to	
	values	metered values	metered values	metered values	

From TWBD's "Water Loss Audit Manual for Texas Utilities"

Authorized Consumption – Tools to help improve data collection

Included on the following pages are some basic tools to help you begin to collect the information you need for a water audit. These tools can either serve as examples, or they can be printed and used directly. The tools for collecting Authorized Consumption data include:

- Line Flushing Report page 14
- ➢ Water Usage for Fire Fighting page 15

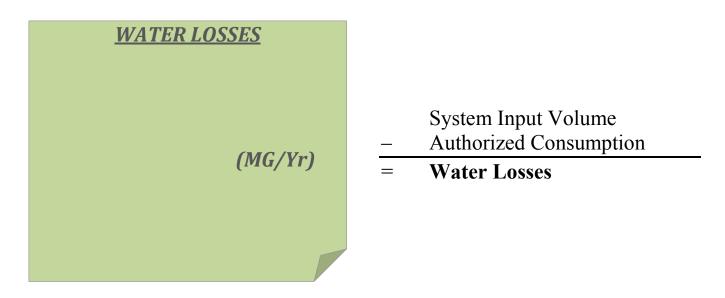
Line Flushing Report Adapted from TWDB's "Water Loss Audit Manual for Texas Utilities"

Date	Location	GPM		Time (minutes)	Gallons
			х		
			x		
			x		
			x		
			x		
			x		
			x		
			x		
			x		
			x		
			x		
			x		
		Т	otal	Gallons	

Remarks:_____

Signature: _____ Date: _____

Water Usage for Fire Fighting


Fire Department Name:

Date	Description of Use	Gallons Used	Documented By (initial)	Comments

6 – Water Losses

Water losses are losses in the distribution system that are not due to authorized consumption. Water losses can be categorized as either apparent losses or real losses.

The following box requires a calculation. If you are using this handbook electronically as an Adobe Form the value should calculate automatically. If you are using this handbook as a paper copy, you need to perform the calculation using the formula provided.

6.1 – Apparent Losses

Apparent losses are also referred to as commercial losses. This is because water that is lost in this way is water that could have been sold. Because of this, when doing financial calculations, this water should be priced at the retail rate. Examples of apparent losses include water theft, slow meters and billing issues. Specifically, apparent losses are comprised of:

Unauthorized Consumption – Typically, unauthorized consumption is considered to be water theft. Examples include taking water illegally from fire hydrants, customer meter tampering, meter bypasses and illegal line taps. This value is low for most water systems. Unless the user has well validated data on unauthorized consumption, a value of 0.25% of the water produced from the users own sources can be used as a starting point for the audit.

Customer Meter Inaccuracies – Customer meters are quite accurate when they are new but as they age and they start to wear they begin to under-register. Meter inaccuracy can be further increased by water that is chemically aggressive. Customer meter inaccuracies are the apparent loss due to the collective under-registration of customer meters. Data should be entered as the percentage under-registration of billed & unbilled metered consumption. This percentage is often estimated. A value of 2.0% under-registration of billed metered consumption of billed metered consumption of billed metered consumption.

Systematic Data Handling Errors – These are errors that occur between when a meter is read and when a bill for that reading is sent to the customer. They are due to data handling and billing errors.

Unauthorized Consumption

- + Customer Meter Inaccuracies
- + Systematic Data handling Errors
- = Apparent Losses

Enter your apparent water losses for unauthorized consumption, customer meter inaccuracies and systematic data handling errors.

APPARENT WATER LOSSE	<u></u>
Unauthorized Consumption	(MG/Yr)
Customer Meter Inaccuracies	(Mg/Yr)
Systematic Data Handling Errors	(MG/Yr)
Total Apparent Losses	(MG/Yr)

Apparent Losses – Where is your data coming from?

Again, you have to understand where your information for Apparent Losses is coming from. Are you guessing at how much is lost? Do you have to use the default values for unauthorized consumption and customer meter inaccuracies? Do you have clear policy in regards to data handling and billing? Data that is acquired using methods on the left side of the table is questionable. Data acquired using methods on the right side of the table is much more valid. Where in the table best describes the data from your system?

Unauthorized Consumption	Arbitrary volume estimates	Default of 0.25% of input volume	Number of events of each type evaluated; multiply by estimated gallons lost per event	Number of occurrences evaluated; monitoring and enforcement program started	Monitoring and enforcement program well established with analyzed losses less than 0.25% and declining from previous years
Average Customer Meter Inaccuracies	No testing or replacement ; estimates only	Testing or replacement of 1 to 5% of meters in year of audit	Analysis of test data finds meters meeting specs, or testing or replacement of 5 to 10% of meters per year	Previous test data analyzed and all meters in specifications, or testing or replacement of 10 to 50% of meters in year of audit	Previous test data analyzed and all meters in specifications, or testing or replacement of over 50% of meters in year of audit
Systematic Data Handling Errors	No review of billing system	Automated system but no checks of data validity	Automated system; less than annual checks of data	Automated system; internally checked on at least annual basis	Assessment of data handling errors conducted internally and audited by third party on annual basis

From TWBD's "Water Loss Audit Manual for Texas Utilities

Apparent Losses – What can you do to improve your data?

Are you happy with the data that makes up your Apparent Losses? If you're not, the table below describes activities that can be done at your system to improve the reliability of your data. Activities are arranged from left to right with the activities on the right giving you the best data

Improvements in quantifying volume of unauthorized consumption	Develop estimates for likely major incidents of unauthorized consumption; use default of 0.25% of input volume	Evaluate number of occurrences of each of major incidents of unauthorized consumption	Identify losses and aim to reduce; audit areas of suspected losses; examine policy and procedures for gaps allowing fraud	Put in place a monitoring and enforcement plan to show reductions in water lost; implement improved policy and procedures for better policing	Continue with monitoring and enforcement program; review at least annually; consider new regulations to thwart specific incidents of unauthorized consumption
Improvements in quantifying loss due to customer meter inaccuracies	Conduct testing regime on small number of meters targeted to suspected problem areas such as meter age or type	Standardize testing and test or replace 5 to 10% of meters; consider increasing number of meters tested or replaced after review of test data	Consider increasing number of meters tested or replaced after review of test data	Consider increasing number of meters tested or replaced after review of test data	Consider increasing number of meters tested or replaced after review of test data
Improvements in quantifying losses due to systematic data handling error	Conduct internal review of meter reading and billing systems	Conduct internal checks on data validity and meter reading procedures	Conduct annual internal checks of billing data	Conduct third party audit of billed data with specific review of possible data handling and meter reading errors	Continue and standardize program

From TWBD's "Water Loss Audit Manual for Texas Utilities

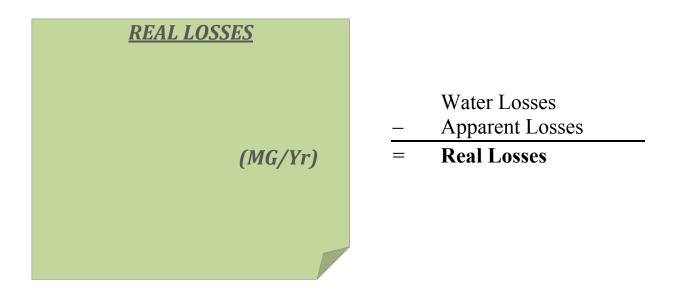
Apparent Losses – Tools to help improve data collection

Included on the following pages are some basic tools to help you begin to collect the information you need for a water audit. These tools can either serve as examples, or they can be printed and used directly. The tools for collecting Apparent Losses data include:

Service Meter Tracking Form – page 22

PWSID:

Service Meter Tracking Form


Location/Address	Manufacturer	Model #	Serial #	Size (in.)	Date Installed	Comments

The Water Audit Handbook for Small Drinking Water Systems

6.2 – Real Losses

Real losses are the water that is actually lost due to leaks. This leakage can occur as distribution and transmission leaks, storage leaks including overflow at water storage tanks and service connection piping leaks. All water systems have loss due to leakage. Preventing or repairing these leaks typically requires a water system to invest in a utility loss control program for the water system infrastructure.

Again, the following box requires a calculation. If you are using this handbook electronically as an Adobe Form the value should calculate automatically. If you are using this handbook as a paper copy, you need to perform the calculation using the formula provided.

Real Losses – Does your system have an active leak control program?

Real losses are water that is lost due to leakage. Do you have any data regarding leakage for your system? How often do you get leaks in your system? How quickly do you fix the leaks? Do you actively go out and look for leaks or do you wait for them to surface? Where in the table best describes the data from your system? If you are on the left side of the table then you do not have an active leak control program. If you are on the right side of the table then you are proactive in finding and fixing leaks.

Reported	Arbitrary	Only visual	Visual leaks	Visual leaks and	Visual leaks and
Leaks	estimates; repairs of reported leaks and breaks not documented	leaks and breaks from customer calls fixed; no known duration before fixing; cursory records	and breaks reported by customers and city staff; call- to-repair times known (greater than one week average); good records	breaks reported by customers and city staff; call-to-repair times average less than one week; computerized maintenance management system used to document leak repair trends	breaks reported by customers and city staff; call-to-repair times average less than two days; outstanding computer maintenance records track system deficiencies and repair crew performance
Unreported	If no active	Limited leak	Proactive leak	Proactive leak	Fully integrated flow
Loss	leakage control activities exist, unreported leaks are undetected and quantity is zero	detection using basic sounding performed for a portion of the distribution system; no detailed records/ database	detection using basic sounding, correlation, and detailed leak detection records; one or more District Metered Areas in use	detection using basic sounding, correlation, flow monitoring, and detailed leak detection and asset condition records; detailed component analysis results	monitoring and leak detection program with continuous reporting and analysis of system leakage; integration with asset management, GIS, and economic level of leakage

From TWBD's "Water Loss Audit Manual for Texas Utilities

Real Losses – What can you do to start a leak control program?

Are you happy with the leakage control program for your system? If you're not, the table below describes activities that can be done at your system to start a leak control program. Activities are arranged from left to right with the activities on the right being the most proactive.

Improvements in quantifying reported leaks	Report leaks and breaks and develop standards to	Standardize recording of leak location and repair data	Continue to standardize recordkeeping process; plan	Implement computerized maintenance management	Use capabilities of computerized maintenance management
	find, repair,		computerized	system to	system to track
	and document		maintenance management	document repairs; reduce	failure trends in distribution
	leaks and		system; cut	leak run time	system and
	breaks		average leak run	average to less	repair crew
			time to less than	than two days;	activity costs;
			one week	plan proactive	conduct
				leak detection	proactive leak detection
Improvements	Plan	Upgrade leak	Improve sonic	Fully integrate	Continue to
in quantifying	proactive	detection	leak detection and	all leak	standardize and
unreported loss	leak	capabilities using	flow monitoring	detection and	audit on regular
	detection,	electronic	capabilities;	asset	basis
	and/or	correlation; set	improve records	management	
	evaluate the feasibility of	structured leak survey schedule;	to include analysis of asset	functions; continue to	
	continuous	improve detail of	condition;	install District	
	flow	records/database	conduct a	Metered Areas	
	monitoring in		component	as economically	
	one or more		analysis by	feasible; start to	
	District		estimating leak	analyze	
	Metered		run times and	economic level	
	Areas		repair times	ofleakage	

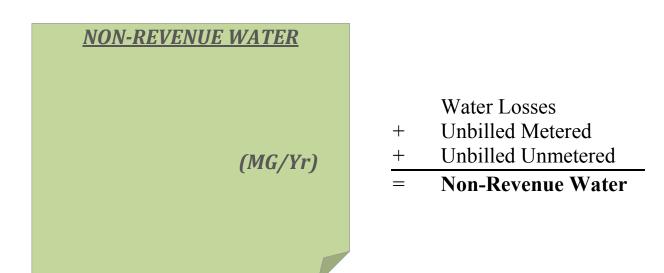
From TWBD's "Water Loss Audit Manual for Texas Utilities

Real Losses – Tools to help start a leak detection program

Included on the following pages are some basic tools to help you begin to collect the information you need for a water audit. These tools can either serve as examples, or they can be printed and used directly. The tools for starting a leak detection program include:

Leak Detection Survey Log – page 27

Water System Name:		PWSID:	
--------------------	--	---------------	--


Leak Detection Survey Log Adapted from TWDB's "Water Loss Audit Manual for Texas Utilities"

Survey Date:	_Crew:	Total Survey Time:	
		Vehicle:	
Give a brief description of	of each leak discovered	d/suspected (size and location):	
1.)			
2.)			
3.)			
4.)			
,			
5.)			
6.)			
0.)			
Additional Notes:			
~			
Signed:			

7 – Non-Revenue Water

Non-revenue water is water that is not billed and for which no payment is received. Non-revenue water can be the result of authorized consumption and from water losses, both apparent and real.

The following box requires a calculation. If you are using this handbook electronically as an Adobe Form the value should calculate automatically. If you are using this handbook as a paper copy, you need to perform the calculation using the formula provided.

8 – Water Audit Data Summary Table

WATER SYSTEM NAM	IE:		PWSID:
WATER SYSTEM ADD	RESS:		
AUDIT START DATE:		AUDIT END	DATE:
CONTACT PERSON NAME:			
TELEPHONE #:		E-MAIL:	

LENGTH OF MAINS (miles):	
NUMBER OF ACTIVE & INACTIVE	
SERVICE CONNECTIONS:	
AVERAGE LENGTH OF CUSTOMER	
SERVICE LINE (feet):	
AVERAGE OPERATING PRESSURE (PSI):	

SYSTEM INPUT VOLUME				
SYSTEM INPUT VOLUME (MG/Yr):				
AUTHORIZED CONSUMPTION				
BILLED METERED (MG/Yr):				
BILLED UNMETERED (MG/Yr):				
UNBILLED METERED (MG/Yr):				
UNBILLED UNMETERED (MG/Yr):				
TOTAL AUTHORIZED CONSUMPTIONS (MG/Yr):				
APPARENT LOSSES				
UNAUTHORIZED CONSUMPTION (MG/Yr):				
CUSTOMER METER INACCURACIES (MG/Yr):				
SYSTEMATIC DATA HANDLING ERRORS (MG/Yr):				
TOTAL APPARENT LOSSES (MG/Yr):				
REAL LOSSES				
TOTAL REAL LOSSES (MG/Yr):				
NON-REVENUE WATER				
NON-REVENUE WATER (MG/Yr):				
Audit performed by:	Date:			

Signature: _____

The Water Audit Handbook for Small Drinking Water Systems

9 – Next Steps

While this handbook is an excellent starting point for performing a water audit at a small drinking water system it does not replace the AWWA/IWA Water Audit Method. If you feel that you have a good understanding of the water audit process and that you have representative data for your system, performing a full top down Water Audit using the AWWA/IWA software could be your next step.

The benefits of using the AWWA/IWA software include being able to look at cost data to determine how much that lost water is costing your system. The software also includes a series of rational performance indicators that allow you to evaluate system specific attributes such as average distribution system pressure. In addition, you are able to grade your data so that a Water Audit Data Validity Score can be calculated. This tells you just how good the data that you input into the audit really is and if you can rely on the audit to make sound managerial and financial decisions. Overall the AWWA/IWA Water Audit Method and software allow for a comparison of results from year to year and even between water systems.

The water audit software can be obtained on the AWWA website at awwa.org. Search for "water loss control". You may have to register in order to download the spreadsheet based software.

Even if you decide that your system is not quite ready to use the AWWA/IWA water audit software, just remember that water loss and performing a water audit isn't something that you can do just once and check it off your list. It is a process that needs to be repeated and the results compared from year to year.

10 – References

AWWA (American Water Works Association). 2010. AWWA Free Water Audit Software[©], Version 4.2. Denver, CO: AWWA.

EPA (Environmental Protection Agency) November 2010. Control and Mitigation of Drinking Water Samples in Distribution Systems, EPA 816-R-10-019.

TWDB (Texas Water Development Board) 2008. Water Loss Audit Manual. Austin, Texas: Texas Water Development Board.