# Integrating Sustainability into Decision-Making at OWASA

Mary Tiger

**Orange Water and Sewer Authority** 

Sustainability Manager







A public, non-profit agency providing water, sewer and reclaimed water services to the Carrboro-Chapel Hill Community.





- Provide drinking water, wastewater and reclaimed water services for 80,000 people in the towns of Chapel Hill and Carrboro and the University
- Annual revenues ~\$39 million
- ~I30 funded staff positions
- University is OWASA's largest customer (about 22% of drinking water sales)
- More than 400 miles of water lines and more than 300 miles of wastewater collection lines



#### sustainability

[ *suh*-stey-n*uh*-**bil**-i-tee ] *noun* 

- 1. A hippy dippy cosmic cupcake term loosely applied to just about everything.... (Urban Dictionary)
- 2. The ability to be maintained at a certain level (Oxford Dictionary)
- *3. Meeting the needs of the present without compromising the ability of future generations to meet their needs (United Nations)*



### Sustainabili ty Principles



Sustainabili ty Principles



#### **Sustainability-Minded Decision Making**

- Programmatic Design and Implementation
  - >Energy Management Program
- Operational Decisions
  - > Biosolids Management
- Capital Projects
  - > Reclaimed Water System
- Long-Term Plans
  - >Long-Range Water Supply Plan



#### **Energy Management Goals**

- Reduce use of purchased electricity by 35% by the end of Calendar Year 2022 compared to the Calendar Year 2010 baseline
- Reduce use of purchased natural gas by 5% by 2020
- Beneficially use all WWTP biogas, provided the preferred strategy is projected to have a positive payback within the expected useful life of the required equipment

#### Pursued through strategic Energy Management Program

- Financially Responsible (High level)
- Realistic/Implementable
- Operational Impacts
- Energy/Carbon Reduction Potential
- Coordinates with Other Projects
- Community Impacts

- Financially Responsible (High level)
  - Likely a good use of public funds
  - Financial viability of similar projects in similar organizations and circumstances
  - Opportunities for outside funding/financing
- Realistic/Implementable
- Operational Impacts
- Energy/Carbon Reduction Potential
- Coordinates with Other Projects
- Community Impacts

- Financially Responsible (High level)
- Realistic/Implementable
  - Degree to which strategy has been proven at a scale relevant to our operation
  - Organizational capacity to undertake and manage the project
  - Reasonable amount of staff time to implement
  - Legal
  - Meets regulatory requirements
- Operational Impacts
- Energy/Carbon Reduction Potential
- Coordinates with Other Projects
- Community Impacts

- Financially Responsible (High level)
- Realistic/Implementable
- Operational Impacts
  - Consistent with how OWASA wants to operate
  - Degree to which strategy helps to resolve an existing or expected problem
  - Impact on safety, comfort, and productivity
- Energy/Carbon Reduction Potential
- Coordinates with Other Projects
- Community Impacts

- Financially Responsible (High level)
- Realistic/Implementable
- Operational Impacts
- Energy/Carbon Reduction Potential
  - Potential to reduce OWASA's energy use
  - Potential to reduce OWASA's carbon emissions
- Coordinates with Other Projects
- Community Impacts

- Financially Responsible (High level)
- Realistic/Implementable
- Operational Impacts
- Energy/Carbon Reduction Potential
- Coordinates with Other Projects
  - Interdependency with other project(s) increases potential to save energy (e.g. upgrade to HVAC system and building envelope)
  - Potential to take advantage of economies of scale to save money and/or staff time
- Community Impacts

- Financially Responsible (High level)
- Realistic/Implementable
- Operational Impacts
- Energy/Carbon Reduction Potential
- Coordinates with Other Projects
- Community Impacts
  - Stakeholder enthusiasm
  - Coordinates with community initiatives

#### Applying the Evaluation Criteria

- Energy Team discussed each project against criteria
- Recommend to:
  - Implement
  - Study
  - Defer until upgrade
  - Defer indefinitely

|    | Energy Strategy                                                                                        | Financially Responsible                                                                                                  | Realistic/                                                           | Operational Impacts                                                                                                                                                                                | Energy/Carbo                                                     |
|----|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|    | Lifeigy strategy                                                                                       | (High level)                                                                                                             | Implementable                                                        | operational impacts                                                                                                                                                                                | Poter                                                            |
|    |                                                                                                        |                                                                                                                          |                                                                      | the working day that are<br>considered "off-peak"                                                                                                                                                  |                                                                  |
| 4  | Pump and Motor Asset<br>Management Program                                                             | Early payback expected based on<br>experience of others                                                                  | Yes, but is technically involved and<br>includes multifaceted effort | Could help identify pumps and<br>motors that need to be replaced<br>before they fail<br>Will help inform performance-<br>based maintenance program                                                 | Significant poten<br>motors account<br>energy use                |
| 5  | Heating, Ventilation, and Air<br>Conditioning Assessment:<br>Operational Changes and Minor<br>Controls | Minor up-front costs<br>Quick payback expected                                                                           | Yes                                                                  | Improved occupant comfort and<br>health                                                                                                                                                            | Energy and natu<br>potential:                                    |
| 6  | <u>Finished Water Pump Use</u><br>Optimization                                                         | Modest cost for a study expected<br>to be offset by cost savings from<br>improved optimization                           | Yes                                                                  | Use of right pump for right flow<br>condition can reduce pump wear<br>and tear<br>Better control of pump start/stop<br>operations<br>Will be important to avoid large<br>flow changes in the plant | Potential to reduce<br>of the energy used<br>pum                 |
| 7  | Heating, Ventilation, and Air<br>Conditioning Assessment:<br>Equipment Replacement                     | In instances of aging equipment<br>or quick payback                                                                      | Yes                                                                  | Improved occupant comfort and<br>health                                                                                                                                                            | Energy and natu<br>poter                                         |
| 8  | Optimize WWTP Filter Backwash                                                                          | Modest cost for monitoring and<br>control system                                                                         | Potentially                                                          | Increased effort for monitoring                                                                                                                                                                    | Could provide 50<br>energy use for<br>denitrificat<br>Modest ene |
| 9  | System-Wide Energy Model                                                                               | Likely a high-cost study                                                                                                 | Potentially                                                          | Would provide a theoretical<br>baseline for future decision-<br>making                                                                                                                             | No direct energy sa<br>for setting re                            |
| 10 | Power Supply Optimization                                                                              | Modest cost of study could<br>identify cost of upgrade                                                                   | Involved study; strategy may have<br>limited benefits to OWASA       | Reduction in power quality could<br>negatively impact VFDs and other<br>equipment                                                                                                                  | Anticipated lin<br>opportunity                                   |
| 11 | Real-Time Nitrification Control<br>System                                                              | Modest up-front investment: We<br>already have about 75% of the<br>monitoring equipment<br>Controls will require back-up | Potentially                                                          | Would enable changes to<br>operational strategies<br>Potential to improve plant<br>performance<br>Automation requires calibration<br>and over-sight                                                | Potential to reduce<br>WWTP by about 5-<br>reductions ma         |

### **Business Case Evaluation or Implementation?**

Projects and strategies where <u>energy management is a</u> <u>secondary objective</u> will be proposed in annual budget or implemented.

Example: Cane Creek Pump Station Improvements

Projects and strategies that have a <u>primary objective of</u> <u>achieving energy management goals</u> will move to the next phase: business case evaluation.

Example: Rooftop solar panel installation

#### **Business Case Evaluation**

- Method: Life-cycle Cost Analysis
  - Threshold: Positive net present value
- Financial considerations (Compared against baseline)
  - Design and construction costs
  - Avoided cost of energy
  - Cost of operations and maintenance
  - Utility rebates and other incentives
  - Analyze project with and without applying a social cost of carbon as a benefit (i.e. revenue) in the business case
- Community engagement important for those projects whose business case is "made" by incorporating a social cost for carbon
- Clean energy projects that surpass the business case threshold will be prioritized in OWASA's Capital Improvement Program or proposed in our annual Operating Budget

#### Energy Management Program Achievements



\*Since 2010 Baseline

#### KPI Metric

SCADA

Energy Dashboard

Specific Energy Dashboard

 $\sim$ 

Embedding Energy into Daily Decision-Making





#### Recycling Biosolids











#### "Triple Bottom Line" Evaluation for Biosolids Management



#### Social Performance

- Safety of employees and public
- Compliance with public health standards
- Odor, dust, noise, etc.
- Effect on farmers
- Effect on employees

#### **Environmental Performance**

- Compliance with environmental standards
- Reliable removal of biosolids from WWTP
- Energy use and greenhouse gas emissions
- Beneficially recycle 100% of biosolids

#### **Financial Performance**

- Relative life-cycle costs
- Proven and reliable strategy at our scale
- Flexible and adaptive to changing conditions
- Cost-effective, balanced program

#### "Shades of Green"



Relative comparison of performance to each other (only applicable to the objective for that row)

|    | A                                                 | В                                                | c                                                                                                                                                         | D                                                                                                                                                                    | E                                                                                                                                                               | l G                                                                                                                                                    | н                                                                                                                                                                        | I                                                                                                                                                                           | J                                                                                                                                                                   | к |  |  |
|----|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| 1  |                                                   | 1                                                | TABLE 2. RELATIVE COMPARISON OF BIOSOLIDS MANAGEMENT OPTIONS AGAINST EVALUATION CRITERIA                                                                  |                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                     |   |  |  |
| 2  |                                                   |                                                  | MANAGEMENT OPTIONS INVOLVING LIQUID BIOSOUDS                                                                                                              |                                                                                                                                                                      |                                                                                                                                                                 | MANAGEMENT OPTIONS NOT INVOLVING LAND ADDUCATION OF LIQUID BIOSOUDS                                                                                    |                                                                                                                                                                          |                                                                                                                                                                             | 1                                                                                                                                                                   |   |  |  |
| 4  |                                                   | EVALUATION CRITERIA                              | BASELINE (Existing<br>Program)<br>50% Cake to McGill;<br>50% Liquid to Farmland                                                                           | 75% Liquid to Farms by<br>Contractor; 25% Cake<br>to McGill by OVASA                                                                                                 | 75% Liquid to Farms by<br>OWASA with Seasonal<br>Contractor; 25% Cake<br>to McGill by OWASA                                                                     | 100% Cake to McGill                                                                                                                                    | 100% Cake to Farmland<br>by O¥ASA                                                                                                                                        | 100% Cake to Farmland<br>by Contractor                                                                                                                                      | 100% Cake to Thermal<br>Drying at VVVRF;<br>Transport by OVASA                                                                                                      |   |  |  |
| 5  |                                                   | Safety of employees and public                   | Maderate total miles for transport                                                                                                                        | Higher miler for transport                                                                                                                                           | Higher miler for transport                                                                                                                                      | Lawer miler far transport                                                                                                                              | Lawer miler far transport                                                                                                                                                | Lawer miler far transport                                                                                                                                                   | Lower miler for transport                                                                                                                                           |   |  |  |
| 6  | 2 * *                                             | Compliance with public health standards          | Maderatorirk af non-compliance;<br>moderatorirk af spillr and improper<br>application                                                                     | Higher rirk due to potential forspill,<br>improper application, containment<br>challenger, and indirect control                                                      | Highor rirk duo ta patontial farspill,<br>improper application, and<br>containment challenger                                                                   | Lawerrick of nan-campliance; lawer<br>spill rick; na rick of improper<br>application                                                                   | Lower rirk of non-compliance due to<br>lowerspill rirk and cake product;<br>higher rirk of improper application                                                          | Lower rirk of non-compliance due to<br>lowerspill rirk and cake product;<br>higher rirk of improper application;<br>higher rirk due to indirect control                     | Lawer rick of non-compliance; lawer<br>zpill rick; na rick of improper<br>application                                                                               |   |  |  |
| 7  |                                                   | Odor, dust, noise, etc.                          | Moderate rick for nuizance levels of<br>odor, durt, noise, etc.                                                                                           | Madoratorirk af adar; highorrirk af<br>durt and nairo duo ta marotranspart<br>laads                                                                                  | Moderate rick of odor; higher rick of<br>duct and noice due to more transport<br>loads                                                                          | Lower risk of oder, noise, and dust -<br>McGill is in industrial area; cake<br>loading not expected to be major oder<br>source; fewer transport loads  | Moderate risk of odor, noise and dust;<br>cakestorage may result in some odor;<br>more transport loads may result in<br>more noise and dust                              | Moderate risk of odor, noise and dust;<br>cakestorage may result in some odor;<br>more transport loads may result in<br>more noise and dust                                 | Lower rirk of odor, noire, and durt -<br>cake loading not expected to be major<br>odor rource; fewer transport loadr                                                |   |  |  |
| *  | SOCIAL I                                          | Effect on farmers                                | Madorato fortilizor andsail<br>canditioning bonofits ta farmors                                                                                           | Higher fortilizer andzail canditioning<br>benefits to farmers                                                                                                        | Higher fortilizer and zuil canditioning<br>benefits to farmers                                                                                                  | No benefitto local farmers (they lose<br>all supplemental fortilizer and soil<br>conditioning benefits)                                                | Lower benefits to farmers; reducer<br>nutrient value by 50% compared to<br>Bareline                                                                                      | Lower benefits to farmers; reducer<br>nutrient value by 50% compared to<br>Bareline                                                                                         | Na bonofit ta lacal farmors (they laro<br>all supplemental fortilizor and sail<br>canditioning bonofits)                                                            |   |  |  |
| 9  | 9                                                 | Effect on employees (program staff and managers) | Existing programstaff maintained;<br>program managementsomeuhat<br>complicated due to coordination of<br>land application program                         | Onestaff pærition eliminated;<br>program managementslightly less<br>complex ar contractor coordinates<br>land application activities                                 | Exirting programstaff maintained<br>and newstaff added; program<br>management more complex for<br>greater land application                                      | Onestaff paritian eliminated;<br>pragram management and regulatory<br>compliance made considerably easier                                              | Exiritngstaff rotained and newstaff<br>added; program management more<br>complex due to new procedures,<br>equipment, etc.                                               | Onestaff pæritien eliminated;<br>prægram management requirements<br>similar; centractør ceerdinates land<br>applicatien activities                                          | Onestaff parition eliminated;<br>program management and regulatory<br>compliance made considerably easier                                                           |   |  |  |
| 11 | NCE                                               | Compliance with environmental standards          | Madorato rirkr afspillr and impropor<br>application; modorato aporation rirk<br>with filtrato troatmont                                                   | Highor risk of spills and impropor<br>application; contractor oversight<br>required                                                                                  | Higherrisk ofspills and improper<br>application                                                                                                                 | Lowerspill rick; higher operational<br>challenge associated with filtrate<br>treatment                                                                 | Laworspill rirk; highor rirk af<br>imprapor applicatian; highor<br>aporatianal challongo associated with<br>filtrato troatmont                                           | Laworspill rirk; highor rirk af<br>imprapor applicatian; highor<br>aporatianal challongo associated with<br>filtrato troatmont                                              | Louerspillrirk; higher operational<br>challenge associated uith filtrate<br>treatment                                                                               |   |  |  |
|    | PERFORMA                                          | Reliable removal of biosolids from WWTP          | Madorato roliability; may bo<br>oxtondod poriadr in which liquid<br>biaralidr cannat bo land appliod; rirk<br>af laring land in pragram                   | Lower roliability; highor rirk duo to<br>oxtondod periodr of inclement<br>woather when land application ir not<br>pazrible; highor rirk of laring land in<br>program | Lowerreliability; higherrirk due to<br>extended periodrafinelement<br>weather when land application ir not<br>parrible; higherrirk of laring land in<br>program | Higher level of reliability depending<br>on terms and conditions required by<br>other party                                                            | Madorato roliability; farmorz cauld<br>drap aut af pragram tazook<br>altornativo fortilizorzaurcor; highor<br>rirk af laring land in pragram                             | Madorato roliability;farmors cauld<br>docido ta drap aut af pragram taxook<br>altornativo fortilizorsaurcor; highor<br>risk af lasing land in pragram                       | Higher lovel of reliability depending<br>on terms and conditions required by<br>other party                                                                         |   |  |  |
| 13 | NMENTAL F                                         | Energy use and greenhouse gas emissions          | Liquid program ir fuol & GMG intenrivo<br>for transport; dewatering ir more<br>energy & GHG intenrive for WWTP<br>operations                              | Higher fuel use and GHGr for<br>transport; lower energy use and GHGr<br>for treatment and N fertilzer<br>replacement                                                 | Higher fuel ure and GHGr for<br>transport; lower energy ure and GHGr<br>for treatment and N fertilzer<br>replacement                                            | Lower fuel we and GHGr for<br>transport; higher energy we and<br>GHGr for filtrate treatment at WWTP<br>and N fertilizer for farmers                   | Lawer fael ure and GHGr far<br>transpart; higher energy ure and<br>GHGr far filtrate treatment at WWTP<br>and N fertilizer far farmers                                   | Lower fuel ure and GHGr for<br>transport; higher energy ure and<br>GHGr for WWTP and N fortilizer for<br>farmers                                                            | Lower fuel we and GHGr for<br>transport; higher energy we and<br>GHGr for filtrate treatment at WWTP<br>and for thermal drying, and for N<br>fortilizer for farmers |   |  |  |
| 14 | ENVIRO                                            | Beneficially recycle 100% of our biosolids       | Achiever 100% beneficial ure                                                                                                                              | Achiever 100% beneficial ure                                                                                                                                         | Achiever 100% beneficial ure                                                                                                                                    | Achiever 100% beneficial ure                                                                                                                           | Achiever 100% beneficial ure                                                                                                                                             | Achiever 100% beneficial ure                                                                                                                                                | Achiever 100% beneficial ure                                                                                                                                        |   |  |  |
| 16 |                                                   | Relative life-cycle costs                        | Highor lifo-cyclo cærtr; highor O&M<br>cærtr; highor capital cærtr                                                                                        | Lower lifercycle cartr; moderate<br>O&M cartr; lower capital cartr                                                                                                   | Lower life-cycle cartr; lower 0%M<br>cartr; moderate capital cartr                                                                                              | Lower life-cycle cartr; lower 0%M<br>cartr; moderate capital cartr                                                                                     | Higher life-cycle cærtr; mæderate<br>O&M cærtr; higher capital cærtr                                                                                                     | Higher life-cycle cærtr; higher O&M<br>cærtr; higher capital cærtr                                                                                                          | Highor lifo-cyclo cærtr; highor O&M<br>cærtr; mødorato capital cærtr                                                                                                |   |  |  |
|    | FORMANCE                                          | Proven and reliable strategy at our scale        | Proven and reliable bared on our<br>experience to date                                                                                                    | Highor rirk of loring land in program;<br>contract land application ir common<br>practico                                                                            | Highor rirk of loring land in program;<br>contract land application ir common<br>practico                                                                       | Higher reliability; mare cantingency<br>aptians are available for dewatered<br>biasolids than liquid; risk of lasing land<br>in program not applicable | Less proven; Inefficient at ourscale<br>due to lack of consolidated farmland,<br>need for offssite coveredstorage;<br>higher risk of losing land in program              | Less proven; Inefficient at ourscale<br>due to lack of consolidated farmland,<br>need for offssite coveredstorage;<br>higher risk of losing land in program                 | Tochnically maro camplox; maro<br>cantingoncy aptians aro available far<br>dowatorod biasalids than liquid; risk af<br>lasing land in pragram nat applicable        | F |  |  |
|    | NANCIAL PER                                       | Flexible and adaptable to changing<br>conditions | Madorato floxibilitysinco wo<br>maintain tux ond manaqomont<br>stratoqior; land availability and<br>roqulatary framowark aro risks to<br>land application | Lowert capital cortr and maintainr<br>future optionr; land availability and<br>requlatory framework are rirkr to<br>land application                                 | Lowert capital cartr and maintainr<br>future optionr; land availability and<br>regulatory framework are risks to<br>land application                            | Higher flexibilitysince alternative<br>end management options uill be<br>available; no sirks associated uith<br>land application                       | Loss floxible and adaptable; cake<br>staraqe facility andspreading<br>equipment required; land availability<br>and requlatory framework are risks ta<br>land application | Lawor floxibility/adaptability; cako<br>staraqo facility andsproadinq<br>oquipmont roquirod; land availability<br>and roqulatary framowark aro risks ta<br>land application | Higher flexibility rince alternative<br>end management aptionr uill be<br>available; no rirkr arrecisted uith<br>land application                                   |   |  |  |
| 19 | Cost-effective, balanced program TO BE DETERMINED |                                                  |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                     |   |  |  |
| 21 |                                                   |                                                  | Relative comparison                                                                                                                                       | of performance to each oth                                                                                                                                           | er (only applicable to the o                                                                                                                                    | bjective for that row)                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                     |   |  |  |
| 22 |                                                   | Key to Cell Shading:                             | UNACCEPTABLE                                                                                                                                              | ACCEPTABLE                                                                                                                                                           | BETTER                                                                                                                                                          | BEST                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                     |   |  |  |
| 23 |                                                   |                                                  |                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                     |   |  |  |

#### **Reclaimed Water System: Partnership with University of North Carolina**

- For chiller plants to cool buildings
- Irrigation
- Flush toilets!





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### **Reclaimed Water System**

- Reduce community's risk to droughts
- Save drinking water for human use
- Reuse supply less vulnerable to drought
- Locally controlled source
- Reduce discharge of nutrients
- Sustainable management strategy
- Cost-effective water source





## Financial Feasibility: The 4<sup>th</sup> "P" of Sustainability

- UNC Funding > \$10,000,000 for Phase I
- \$1.866 million CWMTF grant (North Carolina fund)
  \$0.625 million EPA grant
- UNC expected positive ROI in 4 to 10 years
  - Water rates have increased annually
    - Currently \$8.47/kgal May-Sept and \$4.46/kgal Oct-Apr
    - Currently UNC pays \$0.60/1,000 gallons + \$24,000 base charge
  - ROI dependent on scenarios and demands served

#### **Sustainability-Minded Decision Making**

- Programmatic Design and Implementation
  - >Energy Management Program
- Operational Decisions
  - > Biosolids Management
- Capital Projects
  - > Reclaimed Water System
- Long-Term Plans
  - >Long-Range Water Supply Plan



#### **Lessons Learned for Small Systems**

- Compare decisions to the status quo
- Sustainability programs can save money, but that is not the only reason to pursue (You have to spend money to reach goals.)
- Draw a big fenceline: Partnerships can attract funding and broaden perspective
- Don't worry about quantifying every factor: Relative comparisons inform decision-making

### Integrating Sustainability into Decision-Making at OWASA

Mary Tiger Orange Water and Sewer Authority Sustainability Manager <u>mtiger@owasa.org</u>

919-537-4241

