

Rates and Finance Workshop for Small Water Systems

09/21/17| St. George, UT www.efcnetwork.org

What is Asset Management?

Working smarter not harder is the essence of Effective Management / Asset Management

Mike Daly, White Cliffs, NM Video Profile

Asset Management
Helps You Have the
Most Impact in Your
System By Spending
Your Limited Dollars
in the Best Way
Possible

What you want to do....

Replace all the assets

New tank
New pipe
New pump
New filter

\$5 Million

Now What?

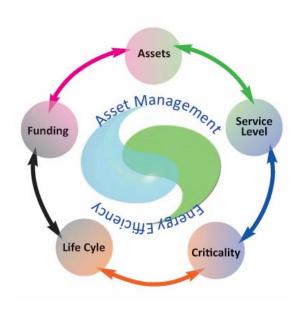
Repair and Rehabilitate

Rehab Option: \$1 M

Rehab Assets

Reduced risk almost as low as new assets for 1/5 the cost

What does this type of analysis take?


- Nothing more than following a systematic approach for managing the assets
- 5 core components of Asset Management
- More on this after lunch ...

Is Asset Management Relevant to SMALL systems?

 Let's hear from a small town called Gallup, NM

Five Core Components of AM

Current State of the Assets

Level of Service

Criticality

Life Cycle Costing

Long-Term Funding

Current State of the Assets

- What do I own?
- Where are the assets?
- What condition are they in?
- How much useful life is remaining?
- What is the replacement value?

Level of Service

Involve Customers

Measurable
Goals: Internal
and External

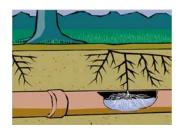
Track Progress

Towards

Meeting Goals

Involve Staff

What would my customers want?



Asset Criticality

What is the probability or likelihood that a given asset will fail?

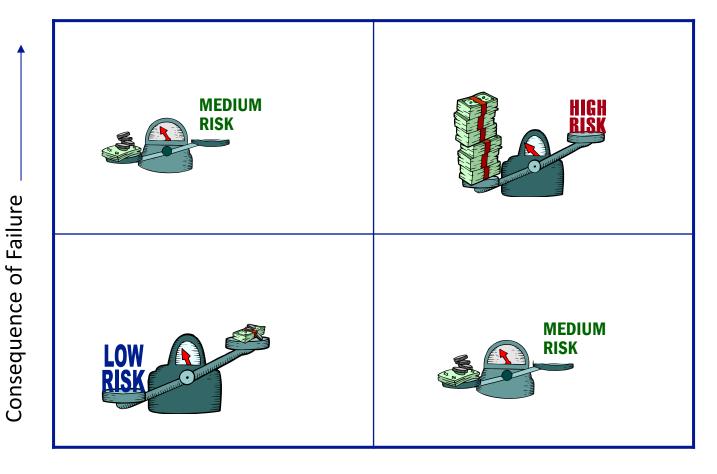
How do my assets fail?

What's the condition of my assets?

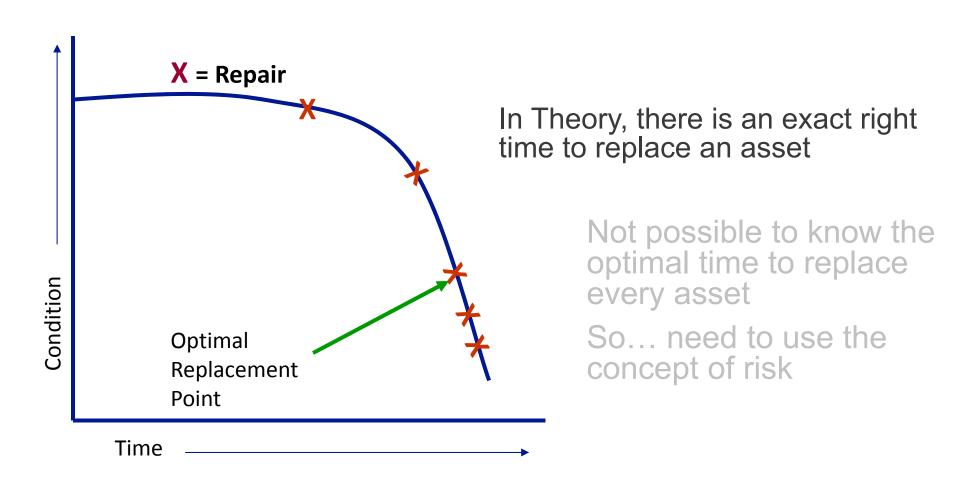
Asset Criticality

What is the consequence if the asset does fail?

Are there legal consequences, environmental consequences, social consequences?

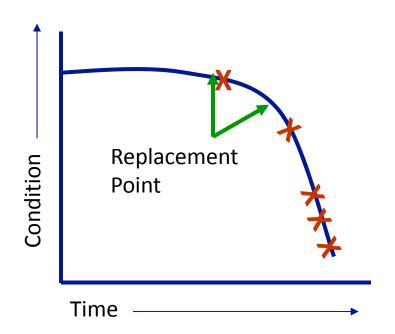

Are there redundant assets?

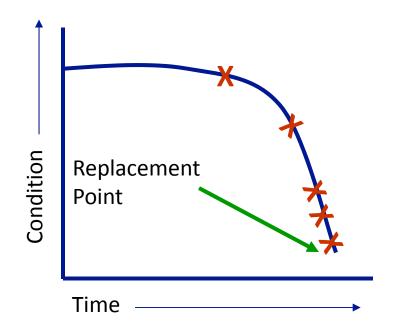
Asset Criticality



Which category of assets do I care the most about? The least?

Probability of Failure


Life Cycle Costing: Replacement of Assets



Life Cycle Costing & Risk

High risk: replace assets early, before failure

Low risk assets: run to failure and replace afterwards

Long Term Funding

- This is where capital planning comes in
- Once you figure out how to get the longest life out of your assets, plan to have the money you need to replace them when necessary

Comments from a Few Practitioners

Jim Smith, City of Louisville, KY

Shawn McLean, City of Somersworth, NH

Long Term Capital Planning

- This is strongly related to asset management
- An official multi-year document that identifies and prioritizes capital projects, identifies funding sources, and sets timelines

Capital Improvement Program

- Identify regulatory deficiencies (discuss with regulatory agencies, look at proposed regulations, talk to consultants), in a 10-20 year window
- Identify growth needs, expansion

Capital Improvement Program

- Identify deferred maintenance problems or where current service is inadequate
- Prioritize based on need realizing that "hidden" infrastructure tends to be ignored

Capital Improvement Program - Timelines

 Use Asset Management Plan to plan for capital expenses in the long term (~20 years)

Capital Improvement Program - Timelines

 Create a Capital Improvement Plan with a narrower timeline (~5 years) in more detail.
 Specify the projects and accurate estimates of cost. Plan where money will come from.

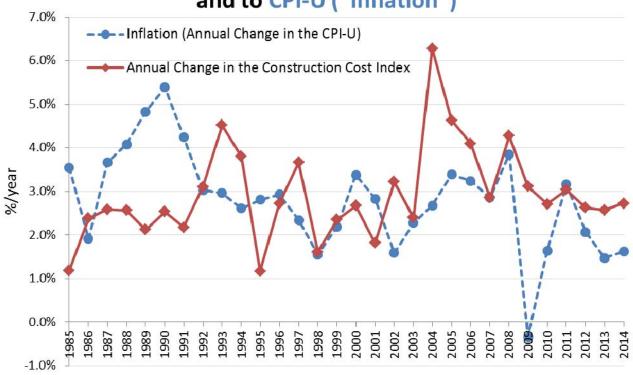
Capital Improvement Program - Timelines

 Create a Capital Improvement Budget with an even narrower timeline (1 – 2 years) committing funds for the planned capital projects. Get it approved/adopted.

Example Capital Improvement Plan (CIP)

Project Name	Planning Years (Values in 000s)						
	FY 02	FY 03	FY 04	FY 05	FY 06	Future	Total
Water Supply & Treatment							
Water Treatment Objective							
Lime pumps and slakers	740						740
Chemical Enclosures		500					500
Filter 7-18 Control			330				330
Filter Gallery Rehab	1,140						1,140
High Service Pumps		1,500					1,500
Upgrade or Replace Reclaim System Drier	200						200
New Membrane Skids				5,700			5,700
Sodium Hypochlorite Plant	2,000						2,000
Additional Storage Tanks					5,000	3,300	8,300
Repair R/O Capacity		150					150
Filter Gallery Mech Parts	300						300
MMIS						150	150
VFDs - HSP		344					344
Membrane Replacement		1,600					1,600
Painting of Water Plant						3,000	3,000
Phase II Emergency Power Generator						1,500	1,500
Portable Generator - South Well Field				150			150
Repalcement of Fuel Tanks			170				170
Upgrade of Existing Control System @ WTP						580	580
Water Treatment Total	:::::::::4;380;	::::::::4::094:	:::::::::::500:	:::::5;850;	:::::5;000:	:::::::8,530:	28,354

Where Can You Find the Prices?


- Call a vendor. Actually, call a few.
- Ask other systems
- Look at past expenses but adjust for increases in costs

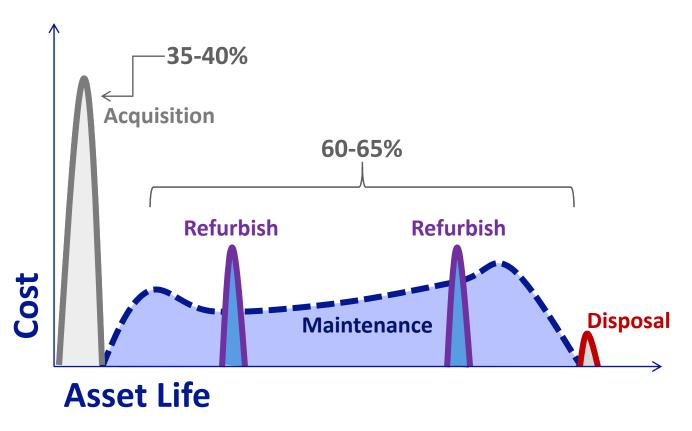
Measures of Inflation

- Consumer Price Index (CPI)—measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services
- Construction Cost Index (CCI)—average prices for labor and key construction materials from 20 cities across the United States

Annual Changes to the Construction Cost Index and to CPI-U ("Inflation")

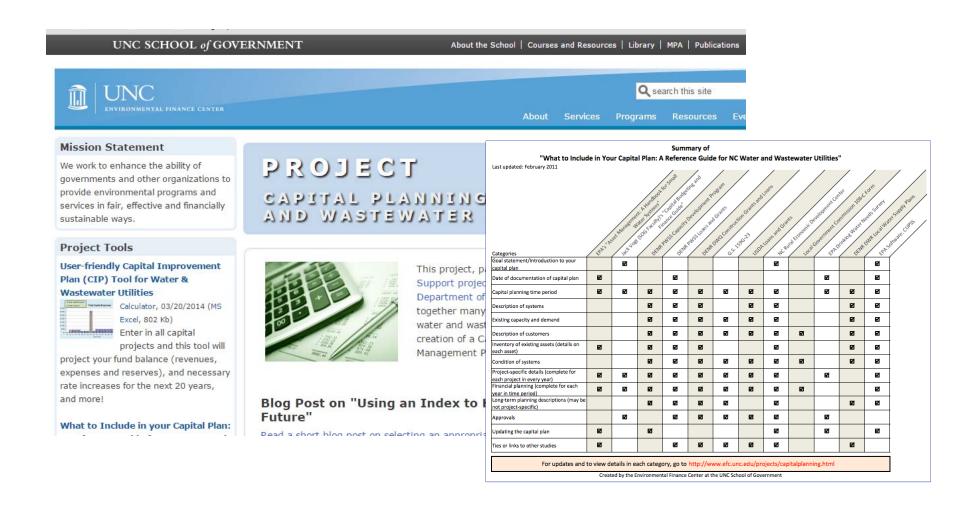
Data analyzed by the Environmental Finance Center at the University of North Carolina, Chapel Hill. Data Sources: Bureau of Labor Statistics, Engineering News-Record ENR.com, InflationData.com, USDA Natural Resources Conservation Services.

http://efc.web.unc.edu/2012/09/26/using-an-index-to-help-project-capital-costs-into-the-future/



Drive Down the CIP Cost

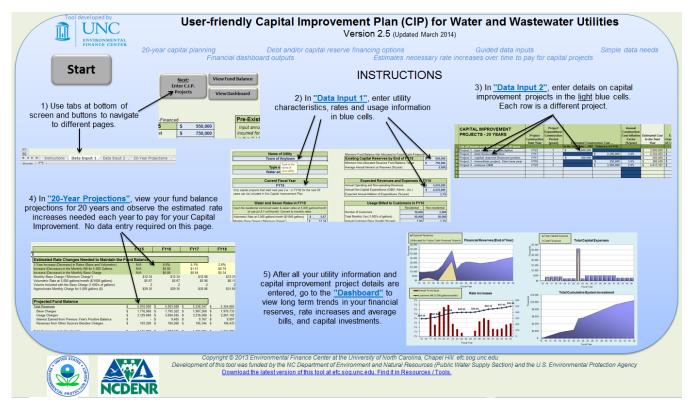
- Is it possible to
 - Eliminate projects?
 - Defer projects?
 - Repair or refurbish instead of replace?
 - Find a non-asset solution?
 - Find collaboration/partnerships alternatives with neighboring systems?
 - Improve balance of cash vs. debt-financed?
- Re-evaluate water demands of your customers. Many systems are now noticing that *total* demand is *decreasing* over time.



Capital Investments are Just the Tip of the Iceberg...

Source: Adapted from Steve Allbee, USEPA

Resource Webpage for Capital Planning



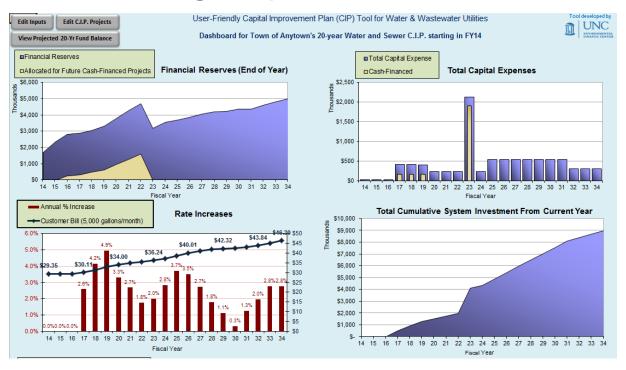
Utah Specific Resources

- Toolbox:
 - http://ruralplanning.org/toolkit.html
- RECENT GUIDES
- Procurement: Policy & Best Practices
- Capital Improvement Planning
- Operations & Maintenance: Costs and Considerations
- Annexation: Introduction for Local Leaders
- Capital Asset Inventory

User-Friendly Capital Improvement Plan (C.I.P.) for Water & Wastewater Utilities Tool

Free, simplified CIP tool using only MS Excel, developed by the Environmental Finance Center at UNC.

Download the latest version at http://efc.sog.unc.edu. Find it in Resources / Tools.


Tool development was funded by the Public Water Supply Section of DWR/ NCDENR and partly by the USEPA.

What the Tool Does

Summarizes your utility's capital needs in the next 20 years, and estimates rate increases needed to fully fund the capital projects, based on debt and/or cash funding requirements

