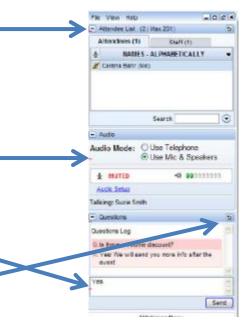
Logistics

At the top right corner of your screen:

Show your control panel to submit questions and see answers

All phones/microphones are muted for the duration of the webinar.


Toggle between full screen/window screen view

Control Panel:

Attendee List

Audio: please choose between speakers and telephone. If you do not hear audio right now, please check your speaker volume or enter #[audio pin]# if using phone.

> Submit questions in the Questions box at any time, and press [Send]. To undock and increase the size of the box, click on top right corner icon.

WEBINAR: Find Money in the Water System Budget: Paying for Energy Improvements

Wednesday, June 16, 2015 2:00 – 3:00 PM EDT

This program is made possible under a cooperative agreement with EPA.

Environmental Finance Center Syracuse University

About the Environmental Finance Center Network (EFCN)

The Environmental Finance Center Network (EFCN) is a universitybased organization creating innovative solutions to the difficult howto-pay issues of environmental protection and improvement. The EFCN works with the public and private sectors to promote sustainable environmental solutions while bolstering efforts to manage costs.

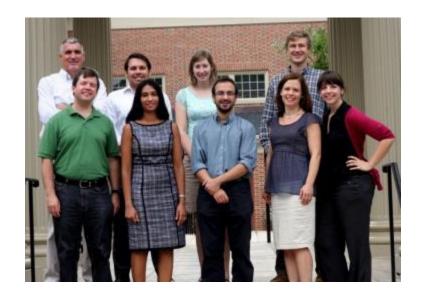
The Smart Management for Small Water Systems Program

This program is offered free of charge to all who are interested. The Project Team will conduct activities in every state, territory, and the Navajo Nation. All small drinking water systems are eligible to receive free training and technical assistance.

What We Offer

Individualized technical assistance, workshops, small group support, webinars, eLearning, online tools & resources

- Environmental Finance Center at University of Louisville
- Environmental Finance Center at University of Maryland, College Park
- Environmental Finance Center at University of North Carolina at Chapel Hill
- Environmental Finance Center at Wichita State University
- EFC West
- Great Lakes Environmental Finance Center at Cleveland State University
- New England Environmental Finance Center at University of Southern Maine
- Southwest Environmental Finance Center
- Syracuse University Environmental Finance Center



Areas of Expertise

- Asset Management
- Energy Use and Efficiency
- Meeting Regulatory Compliance
- Fiscal Planning and Rate Setting
- Multi-funding Coordination
- Communications and Decision-making

- Water Loss Reduction
- Working with Other Water Systems
- Financing
- Funding Programs
- Managing Small Utilities in Drought

UNC SCHOOL of GOVERNMENT

Dedicated to enhancing the ability of governments and other organizations to provide environmental programs and services in fair, effective, and financially sustainable ways through:

- Applied Research
- Teaching and Outreach
- Program Design and Evaluation

How you pay for it matters

http://efc.sog.unc.edu

Find Money in the Water System Budget: Energy Management (E.M.) Webinar Series

- #1: E.M. Planning for Small Water Systems and the NYSERDA Model (12/02/2014)
- #2: E.M. Teams, Baselines, and Data Collection (03/03/2015)
- #3: E.M. Project Ideas, Prioritization Methods, and Implementation Planning (06/09/2015)

#4: Paying for Energy Improvements (09/16/2015)

Speakers for Today's Webinar

- Cory Cox, Public Utilities Director, City of Pickens, South Carolina
- **Frank Shepard**, PE, LEED AP, Consultant with Shultz Engineering Group; Associate with Ally Engineering
- Glenn Barnes, Senior Project Director, UNC Environmental Finance Center
- **David Tucker**, Project Director, UNC Environmental Finance Center

Agenda for Today's Webinar

Topic

Welcome and Logistics

David Tucker, Glenn Barnes, and Lisa Ruggero

Overview of How to Pay for Energy Management Projects, with a Focus on Energy Savings Performance Contracting (ESPC)

David Tucker

Energy Savings Performance Contracting: The Perspective from an Energy Services Company (ESCO) Professional

Frank Shepard

Energy Savings Performance Contracting: The Perspective from a Local Government Small Drinking Water System (City of Pickens, South Carolina) *Cory Cox*

Question & Answer Session and Wrap-Up

Polling Question 1

What kind of drinking water utility do you represent? (choose one)

- For-Profit Water Utility
- Local Government (Municipal or County)
- Not-for-Profit / Cooperative / Association
- Other H2O Util. (Authority, District, School, Hotel, etc.)
- Not a Drinking Water Utility

Polling Question 2

What size drinking water system does your utility operate (by number of people served)? *(choose one)*

- Very Small (500 or fewer people served)
- Small (501 to 3,300 people served)
- Medium (3,301 to 10,000 people served)
- Large or Very Large (10,001 or more people served)
- Not a Drinking Water Utility

Polling Question 3

For energy savings performance contracting (ESPC), used to finance energy projects at your water utility, have you? *(choose one)*

- Never heard of ESPC before now.
- Have heard of ESPC but have not done one yet.
- Our utility is currently doing an ESPC.
- Our utility has completed an ESPC. What do we do next?
- Not a Drinking Water Utility.

Energy Management for Small Water Systems

Find Money in the Water System Budget: Paying for Energy Improvements

David Tucker, Environmental Finance Center at the University of North Carolina at Chapel Hill

Ways to Pay

- Pay as you go (current receipts)
- Save in advance and pay (fund balance, capital reserve fund)
- Pay later (someone loans you money)
- Grants (let someone else pay)

The Best Way to Pay? It Depends

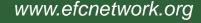
- Pay as you go Best for small energy improvements
- Fund balance
- Pay later
- Grants

Best for large energy improvements

http://www.dsireusa.org/

What is an Energy Upgrade?

- An energy upgrade to water or wastewater system is really just a capital improvement
- You can treat energy upgrades just like any other capital improvement



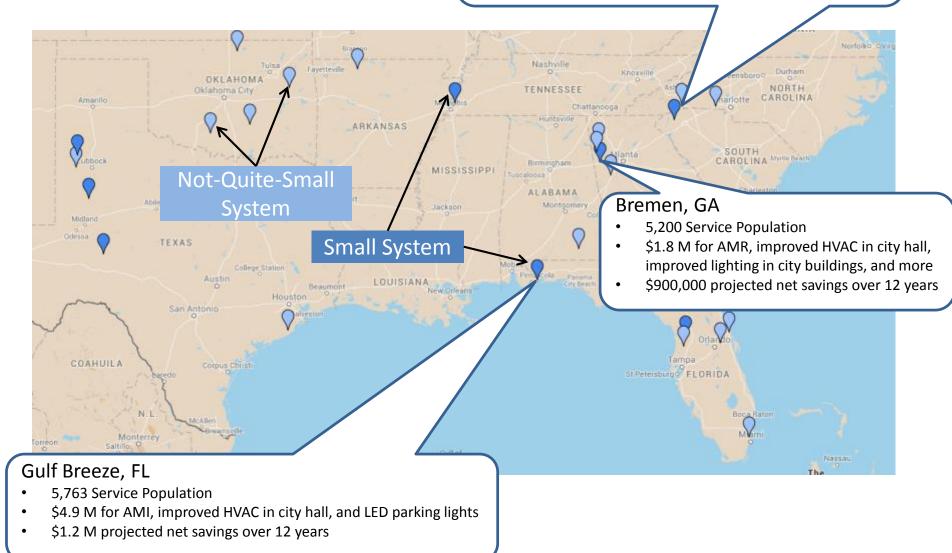
Where Capital Funding Comes From

- Rates / Monthly bills
- Special assessments to current customers
- Impact fees to new customers
- Debt Market, including State Revolving Funds
- Grants
- Or any way that your system gets revenue

What is an Energy Upgrade?

- An energy upgrade to a water or wastewater system is also a <u>special</u> capital improvement
- As a result, there are special financing options available for energy upgrades

Energy Savings Performance Contracting (ESPC)



Small Systems ESPC Examples

Pickens, SC

- 9,569 Service Population
- \$ 5 M for AMR and new pumps
- \$ 2.5 M projected net savings over 15 years

What is Performance Contracting

- ESCO proposes and designs a package of energy cost reduction measures, installs or implements those cost reduction measures, and guarantees the savings of the cost reductions.
- ESCO may put up all of the capital for the energy projects

What is Performance Contracting

- The ESCO pays itself back for the package over time using the stream of revenue provided by the energy reduction measures.
- Third party verifies ESCO reconciliation report.

Why not do it yourself?

- Often opportunities to reduce energy costs are well known but owners are unable to take advantage of them
 - Capital
 - Expertise
 - Manpower
- Can you guarantee the savings?

Performance Contracting Advantages

- A process with a single point of responsibility (rather than multiple contractors for various projects)
- Provides you with the ESCO's capital
- Provides you with the engineering and project management expertise of the ESCO
- Guaranteed performance / savings

www.efcnetwork.org

Steps to a Successful Project

- Assemble stakeholders
- Create data packet for project (application)
- Issue RFP
- Evaluate responses (select ESCO)
- Perform IGA
- Negotiate contracts
 - ESCO contract
 - Financial contract (in some cases)
- For govt. agencies: get approval from appropriate government agency

www.efcnetwork.org

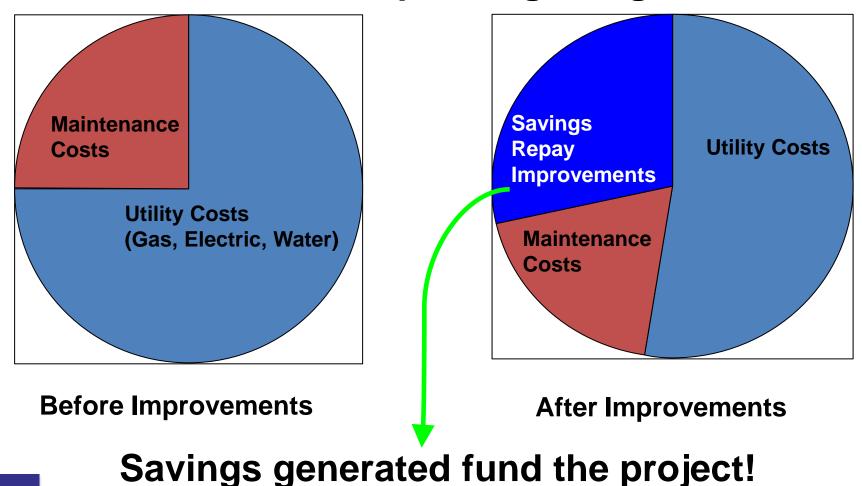
Measurement & Verification

- Actual savings measured are compared to guaranteed savings by third party.
- If actual savings less than guaranteed savings, ESCO pays the difference to the governmental unit.
- The cost of the required third party M&V review is to be included in the contract.

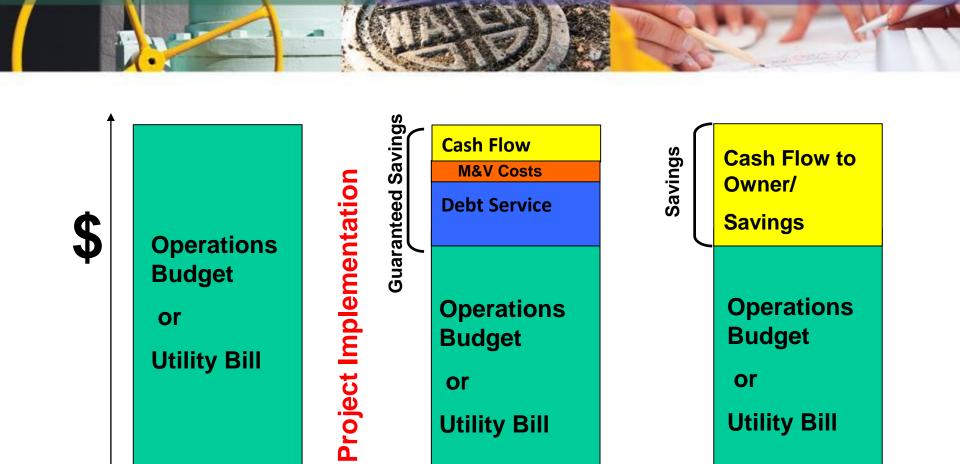
www.efcnetwork.org



Performance Contract Concept


Quick Payback

Long Payback



Annual Operating Budget

Before Performance Contract

During Performance Contract After Performance Contract

Performance Contracting Comparison

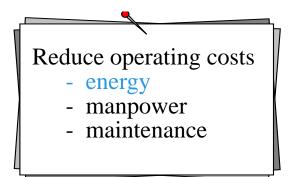
	<u>Plan/Bid/Spec</u>	Performance Contracting
Financial	Capital/Bond/Cash	\$\$ You are already Spending – Operating Budget
Relationship	Scope? Completion? Commissioned? Warranty…Gone	Continuous Partnership over life of contract
Upfront Fees	Yes	None
Performance & Financial Guarantee	None	Operational & Financial
Change Orders	Yes – Almost Always	Not Typically

Energy Management Success Stories: An ESCO Perspective and Kings Mountain, N.C.

- Frank Shepard, PE, LEED AP
- Consultant with Shultz Engineering Group; Associate with Ally Engineering

Performance Contracting for Municipal Water Systems

FRANK SHEPARD, PE


Frank Shepard, PE <u>Shepardpe@gmail.com</u> 919 607-3925

Getting Started

City first considered an AMR water meter project

Siemens met with the City Manager and the Mayor to discover challenges at the City

- Meter reading was not a big issue
- 40 year old over-sized water pumps and switchgear was the biggest issue and there were no funds available in the CIP to solve the problem
- Reduced water consumption made the current system oversized
- City Hall needed a new Chiller and control system
- Other goals

Frank Shepard, PE <u>Shepardpe@gmail.com</u> 919 607-3925

Feasibility Study

Stakeholders meeting brought together the people with the intimate knowledge Data collection and site walk-thru's were conducted

A feasibility study resulted

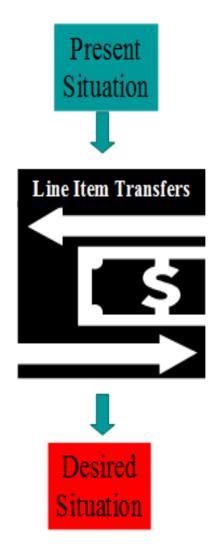
- The big discovery was matching the electrical demand load to the Duke-Energy rate schedule
- The 9 Million gallon storage capacity and the 3 MGD usage created an opportunity
- The next important discovery was at the WWTP also needed upgrades
- The City also wanted to provide air conditioning for youth GYM
- City Hall Chiller and controls
- Lighting and HVAC

The Audit

City Council approved a RFP for Performance Contracting

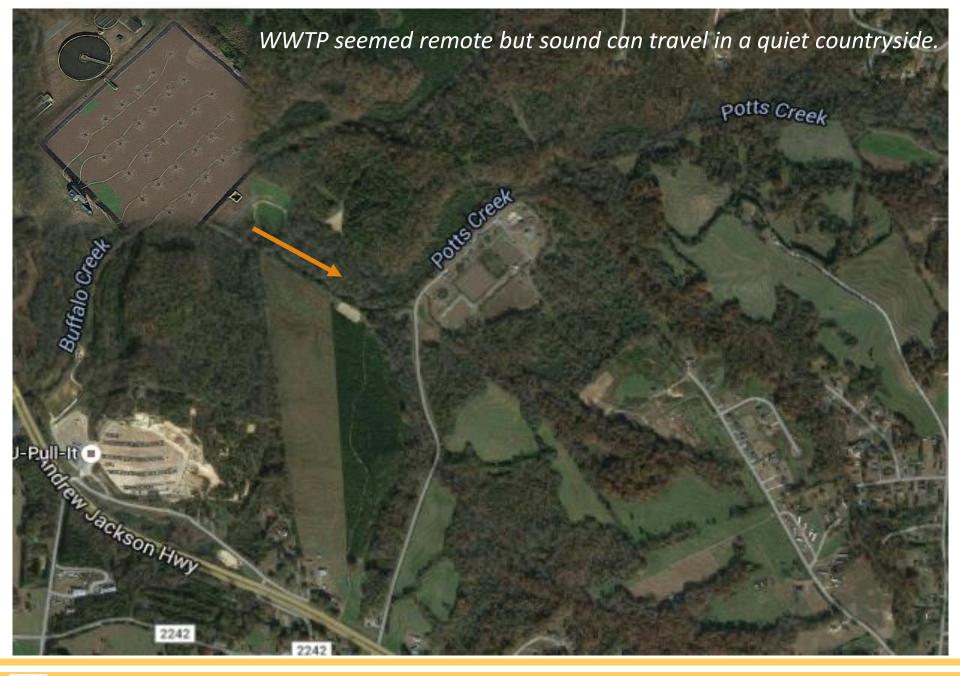
A non-proprietary RFP developed by the Energy Services Coalition was used for ESCO selection

An Investment Grade Audit was conducted.


- The City agreed to operate the water supply pumps off-peak resulting in significant savings
- These savings allowed the project to provide new pumps and switchgear more closely matched to the current load plus future growth considerations
- The WWTP changed the process slightly to provide fine bubble aeration equipment
- Inflow and infiltration was considered but not included > too costly
- City-wide lighting was included
- The City staff decided they could install the lighting if product was
 provided

Funding

- The City Finance Director contacted their financial advisor and brought in several banks to provide the Municipal Lease
- The project produced a positive cash flow based on a 12 year lease
- NC process required City Council and LGC approval
- City Council approved the final contract and construction began



Project Implementation

- The Gym units delivered were the wrong voltage
- The WWTP
 - The engineer of record passed away
 - State approval for the WWTP process change took a year
 - The WWTP equipment was delivered and remained uninstalled for several months
 - Operation produced too much noise
- The pumps at the main water plant and the booster plant were installed without water delivery interruption
- The City staff and the lighting supplier struggled with the correct applications and delivery
- The City Hall chiller and controls were a weekend change-out
- The new SCADA system for the water plant had IT interface issues
- 12 month schedule grew to 30

Frank Shepard, PE <u>Shepardpe@gmail.com</u> 919 607-3925

Finally, construction was completed – no change orders.

The ESCO corrected all issues. Savings have been achieved.

The budget was not directly affected – except that capital funds could go to other priorities.

Energy Management Success Stories: A Small Water System Perspective from Pickens, S.C.

Cory Cox

Public Utilities Director

City of Pickens, S.C.

The City of Pickens

Performance Contract

Cory Cox, PE Public Utilities Director

City of Pickens' Metrics

- Small, rural community approximately 45 min outside of Greenville SC
- ► ~5,000 water customers, ~2,200 sewer customers
- ► WTP with 4 MGD Capacity
- ▶ WWTP with 1 MGD Capacity
- ~\$3MM Operating and Capital Budget

Basic Performance Contract Steps:

- The City issued a RFP for an ESCO with the basic project in mind to reduce operational and energy cost.
- Preliminary Audit
 - Distribution System, Collection System, Water Plant, Wastewater Plant
- Investment Grade Audit
- Contract Generation
- Construction Phase
- Review/Evaluation Phase (15 years)

The Project Scope (Distribution System):

- Master Meter Drive-by Radio Read AMR System
- Install (2) New 25 hp pumps at the Joy Rd Pump Station
- SCADA for the distribution system

The Project Scope (Water Plant):

- (2) new 300 hp finish pumps
- New 100 hp finish pump
- New chemical feed pumps
- (2) new 40 hp raw water pumps (Source 1)
- New 20 hp raw water creek pump (Source 2)
- SCADA overhaul

The Project Scope (Waste Water Plant):

- New influent course bar screen
- Replace jet pumps with large and fine bubble mixing/aeration

		Annual Utility Savings		0	Annual perational Savings	Non-Annual Operational Savings		Captial Cost Avoidance		Revenue Increase		Total Benefit		Design		Cont.		Est. Construction Cost		Annual Service Fee	
	ECM Description		\$/Yr		\$/Yr.		st Yr \$		Total \$	\$/Yr.		\$/Yr			(\$)	(\$)		(\$)	_	(\$/Yr.)	
	Water Meters Total	\$	•	\$	275,910	\$	26,540	\$	-	\$ 59,67	76	\$ 362,	26		\$-	\$ 75,000	\$	1,151,491	\$	1,500	1
Water Meters	AMR Metering Systems - Mastermeter	\$	-	\$	275,910	\$	26,540	\$	-	\$ 59,676	\$	362	126	\$	-	\$ 75,000	\$	1,151,491	\$	1,50	D
Wat	ter Treatment Plant Total	\$	13,662	\$	76,491	\$	•	\$	390,000	\$	- :	90,	153	\$	62,900	\$ 4,000	\$	990,411	\$	-	-
WTP	WTP Time of Day Rate	\$	-	\$	-	\$	-	\$	-	\$, ;	-	\$	10,500	-	\$	-			
WTP	Replace Large Finish Water Pump	\$	9,496	\$	-	\$	-	\$	120,000	\$ -	\$	9,	496	\$	30,300	\$ 1,000	\$	299,312			
WTP	Replace 100 HP Finishing Pump	\$	533	\$	-	\$	-	\$	65,000	-	\$		533	\$	1,250	\$ 500	\$	60,872			
WTP	Replace 20HP Creek Pumping System	\$	801	\$	25,497	\$	-	\$	45,000	\$ -	\$	26,	298	\$	4,250	\$ 500	\$	70,389			
WTP	Replace (2) 40 HP Lake Pumps and Add High Influent Wet Well Section	\$	566	\$	25,497	\$	-	\$	120,000	\$ -	\$	26,	063	\$	13,500	\$ 500	\$	296,811			
WTP	Replace/Upgrade Chemical Feed Pump & Chlorinators	\$	-	\$	25,497	Ş	-	\$	40,000	-	\$	25,	497	\$	1,600	\$ 1,000	\$	167,018			
WTP	New Joy Drive Pump	\$	2,266		-	\$	-	\$	-	\$	\$	-	266	\$		500		96,009			
Waste Water Treatment Plant Total		\$	13,609	\$	-	\$	•	\$	89,500		- :	\$ 13,0	509	\$	32,100	\$ 5,500	\$	705,768	\$	•	
WWTP	New Influent Pump and Alarm System	\$	-	\$	-	\$	-	\$	-	\$ -		5	-	\$	600	\$ -	\$	-			
WWTP	Replace Existing Coarse Bar Screens	\$	-	\$	-	\$	-	\$	18,000	\$		6	-	\$	2,000	\$ 500	\$	107,885			
WWTP	Replace Jet Pumps w/ Large and Fine Bubble Mixing/Aerations	\$	13,609	\$	-	\$	-	\$	71,500	-	\$	13,	609	\$	25,000	\$ 5,000	\$	597,883			
WWTP	Replace 3.5 Ton HVAC Unit	\$	-	\$	-	\$	-	\$	-	\$ -		5	-	\$	2,000	\$ -	\$	-			
WWTP	Replace Trojan UV Disinfection System	\$	-	\$	-	\$	-	\$	-	\$ -			-	\$	2,500	\$ -	\$	-			
SC	CADA System Upgrades	\$	•	\$	9,974	\$	•	\$	100,000	\$	- :	\$ 9,9	974		\$-	\$ 3,000	\$	316,000	\$		
SCADA	Install Additional SCADA Points	\$		\$	9,974	\$	-	\$	100,000	\$ -	\$	9,	974	\$	-	\$ 3,000	\$	316,000	L		
PROJECT TOTAL		\$	27,271	\$	362,375	\$	26,540	\$	579,500	\$ 59,676	\$	475,	862	\$	95,000	\$ 87,500	\$	3,163,670	\$	1,50	0

Note: this was not the final project scope

Contract Details

- Total Cost \$4,910,013
- Contract was designed around satisfying 14 Energy Control Measures (ECMs) during construction and the power saving after construction
- The descriptions of the ECMs in the contract are very vague.
 - "ESG will replace the existing 300 HP and 400 HP finish pumps with (2) new 300 HP finish pumps and premium efficiency motors. The new motors shall be inverter duty ready and installed with a variable frequency drive. Additionally, ESG will replace the existing high service finish water MCC with a new distribution panel."
- The Contractor takes a lot of the risk
- 15 year contract with ESG

How did we pay for it:

- Revenue Bond
- Largest bond the City has ever issued
- Third Party Financial Advisor Optional
- Check in with Bond Attorney early in the process

Third Party Review:

- Reviewed our finances and ESG cost savings.
- U.A.N. Report
 - ESG Project Debt = ~\$450,000/year
 - Debt coverage 1.72-1.82 over the next 5 years. (1.2 minimum for parity bonds)

				P	rojected for	FIS		din	the second second second		
1e	Description		2015		2016		2017		2018		2019
	Operating Expenses										
1	Water 4300 Operations And Maintenance	s	625,918	s	643,540	s	661,640	s	680,340	s	699,5
2	4320 Wastewater		025,510		015,510		001,010	Ű	0	č	077,5
3	4330 Water Plant		680,294		699,030		718,260		738,030		758,3
4	Total Operating Expense-Water	S	1,306,212	S	1,342,570	\$	1,379,900	S	1,418,370	S	1,457,8
	Sewer		2/2 /2/						202.202	•	
5	4300 Operations And Maintenance	S	260,506	\$	267,860	\$	275,440	S	283,200	S	291,1
6 7	4320 Wastewater 4330 Water Plant		283,141 0		290,970 0		298,980 0		307,230 0		315,7
8	61 Stormwater Utility		12,000		12,310		12,630		12,950		13,2
9	Total Operating Expense-Sewer	S	555,647	s	571,140	\$	587,050	s	603,380	S	620,1
)	Cost Savings Due to AMR Project	s	(61,300)		(238,534)		(242,279)	s	(246,134)		(250,0
1	Total Water, Sewer Operating Expenses	s	1,800,559	s	1.675,176	s	1,724,671	s	1,775,616	s	1.827.9
2	Income Available For Debt Service	1.00	1,432,377	s	1,696,399			~	1,653,919	s	1,603,0
	Debt Service	s		s	298,210		301,955		308,794	2	312,7
	Parity Indebtedness		/ 0,017		270,210	Ŷ	201,000	Ť	500,171	č	
3	Series 2010 Wtr & Swr Principal Bond	S	116,618	s	121.043	s	125,636	s	130,403	s	135.3
4	WTP Bond Principal		159,552		165,870		172,438		179,267		186,3
5	2010 Wtr & Swr Interest		57,677		53,252		48,659		43,892		38,9
6	WTP Bond Interest		148,702		142,383		135,814		128,986		121,8
7	Series 2014 Revenue Bonds (ESG Capital Costs)		224,853		449,706		449,706		449,706		449,7
8	Total Parity Debt	S	707,402	S	932,254	\$	932,253	\$	932,254	\$	932,2
9	Debt Service Coverage-Parity Debt		2.02	_	1.82	_	1.82	_	1.77		1
0	Remaining Net Revenue After										
	Debt Service	s	724,975	s	764,145	s	767,953	s	721,666	\$	670,7
	Other Expenses/Capital/Transfers										
1	WWTP Capital Improvement	s		s	44,500	\$	10,000	S	120,000	\$	85,0
2	Sewer Collection System Capital		0		0		0		0		
3	Wtr Plant Capital Improvement		5,000		58,000		22,000		7,000		07.0
4	Allocation To Contingent Fund		37,256		37,256		37,256		37,256		37,2
5	O&M Capital Equipment		0		0		0		0		265.0
6	O&M Capital Line Improvement		246,000		426,000	•	233,000		470,000		265,0
7 8	Stormwater Capital		100,000 0		100,000		100,000		100,000		100,0
9	New Sewer Line (Walmart S-100-12) 3 % Utility Transfer		140,000		140,000		140,000		140,000		140,0
		-				_		_	-	_	
0	Total Other Expenses/Transfers Out/(In)	S	548,256	S	805,75 6	\$	542,256	S	874,256	S	627,2
1	Remaining Funds Available	s	176,719	S	(41,611)	\$	225,697	S	(152,590)	\$	43,5
	Funds Balance Activity										
2	Beginning Fund Balance	S		s	741,719		700,108	S	925,805		773,2
3	Plus/(Minus) Remaining Funds Available		176,719		(41,611)		225,697		(152,590)		43,5

The Take-Aways:

Pros:

- Performance contracts are an alternative funding mechanism that allow you to hit multiple aspects of your system all in one project
- I project manager for the whole project
- Set up in a design-build format
- If we don't see the power saving, ESG will cut us a check for the difference!

The Take-Aways:

Cons:

- A big chunk of our theoretical savings are operational savings and will not be fully realized.
- Due to design-build format and performance guarantee initial cost is higher than traditional project formats

The Take-Aways:

What We Learned:

- The banks don't care how much money it will save. They want to know if you can pay the loan without saving a dime.
- Make sure you are conservative on the operational savings, Are you really going to fire that guy?
- Don't finance the project longer than the useful life of the equipment

Polling Question 4

Would you like to subscribe to the UNC Environmental Finance Center blog? (choose one)

- Yes
- No

Polling Question 5 and Evaluation Survey Link

Are you interested in receiving in-depth technical assistance for your small water system? *(choose one)*

- Yes
- No
- Would Like More Information About This

For More Information about ESPC:

- <u>http://efc.web.unc.edu/2015/08/13/energy-savings-</u> performance-contracting/
- http://www.naesco.org/
- https://www.naseo.org/
- http://web.ornl.gov/info/esco/legislation/newesco.shtml
- <u>http://energy.gov/eere/slsc/energy-savings-performance-</u> <u>contracting</u>
- <u>http://www.epa.gov/greeningepa/energy/espc.htm</u>

www.efcnetwork.org

Thank You!

And please let us know if you have any questions.

Cory Cox Public Utilities Director City of Pickens, South Carolina ccox@pickenscity.com

Frank Shepard, PE, LEED AP Consultant with Shultz Engineering Group; Associate with Ally Engineering <u>shepardpe@gmail.com</u> Glenn Barnes UNC Environmental Finance Center glennbarnes@sog.unc.edu

David Tucker UNC Environmental Finance Center drtucker@sog.unc.edu

www.efcnetwork.org

