

WEBINAR: How to Navigate the SRF Program in Utah

Monday, November 14, 2016 1:00 – 3:00 PM MST

This program is made possible under a cooperative agreement with EPA.

Logistics

At the top right corner of your screen:

Show your control panel to submit questions and see answers

All phones/microphones are muted for the duration of the webinar.

Toggle between full screen/window screen view

Control Panel:

Attendee List

Audio: please choose between speakers and telephone. If you do not hear audio right now, please check your speaker volume or enter #[audio pin]# if using phone.

> Submit questions in the Questions box at any time, and press [Send]. To undock and increase the size of the box, click on top right corner icon.

Registrants of this webinar

About the Environmental Finance Center Network (EFCN)

The Environmental Finance Center Network (EFCN) is a universitybased organization creating innovative solutions to the difficult howto-pay issues of environmental protection and improvement. The EFCN works with the public and private sectors to promote sustainable environmental solutions while bolstering efforts to manage costs.

The Smart Management for Small Water Systems Program

This program is offered free of charge to all who are interested. The Project Team will conduct activities in every state, territory, and the Navajo Nation. All small drinking water systems are eligible to receive free training and technical assistance.

What We Offer

Individualized technical assistance, workshops, small group support, webinars, eLearning, online tools & resources

Who We Are

- Environmental Finance Center at University of North Carolina at Chapel Hill
- Southwest Environmental Finance Center
- Syracuse University Environmental Finance Center
- Environmental Finance Center at Wichita State University
- Environmental Finance Center at University of Louisville
- EFC West
- Great Lakes Environmental Finance Center at Cleveland State University
- New England Environmental Finance Center at University of Southern Maine

Areas of Expertise

- Fiscal Planning and Rate Setting
- Asset Management
- Energy Use and Efficiency
- Meeting Regulatory Compliance
- Multi-funding Coordination
- Communications and Decision-making

- Water Loss Reduction
- Working with Other Water Systems
- Financing
- Funding Programs
- Managing Small Utilities in Drought

Navigating to Funding Tables

Step 1: efcnetwork.org Step 2: Select "Funding Sources by State" under the Resources Tab

• -> C |] efcnetwork.org/funding-sources-by-state/

Funding Sources by State

Note: Some states may have additional resources listed below the map.

Click on the map below to view funding sources for each state:

Presenters

Ken Bousfield

Division Director Utah Department of Environmental Quality

Michael Grange

Construction Assistance Section Manager Utah Department of Environmental Quality

Stacey Berahzer

Senior Project Director Environmental Finance Center at the University of North Carolina on Chapel Hill

UNC SCHOOL of GOVERNMENT

Dedicated to enhancing the ability of governments and other organizations to provide environmental programs and services in fair, effective, and financially sustainable ways through:

- Applied Research
- Teaching and Outreach
- Program Design and Evaluation

How you pay for it matters

http://efc.sog.unc.edu

Objectives

- Understand the background of the State and Federal funded State Revolving Fund (SRF) Programs
- Learn what types of projects are eligible for SRF funding
- Understand some of the requirements related to federal funding
- Learn about the timelines and process for SRF applications
- Get tips on how to score higher on your SRF application

INTRODUCTION

The Debt Market

- Why Borrow?
- Water infrastructure has a long useful life
- Amortizing the loan over the life of the equipment allows your customers to benefit from system improvements now and pay for them over time

When You Need Cash Now: The Debt Market

- Lenders consider the following when determining whether to loan money and at what interest rate:
 - your creditworthiness,
 - your ability to repay the debt

When You Need Cash Now: The Debt Market

- The SRF Programs consider the following when providing assistance:
 - Median Adjusted Gross Income (MAGI)
 - Average monthly water bill
 - Project cost per connection
 - System contribution
 - Special incentives

The Debt Market

• Two types—Loans and Bonds

- Loans, can be more universally available, depending on the state
- Bonds In Utah, political subdivisions have to bond for their longer term projects

Loans

Typically from a bank

Can be from a government-sponsored
program

What is the State Revolving Fund (SRF) Program?

- There are 2 programs:
 - Drinking Water State Revolving Fund (DWSRF) for "drinking water"
 - Clean Water State Revolving Fund (CWSRF) traditionally for wastewater and other water quality projects
- A federal-state partnership:
 - States provide a 20% match on federal funds
 - Programs are administered by staff in the specific

state

Drinking Water SRF

- Established by the 1996 amendments to the Safe Drinking Water Act (SDWA)
- All 50 states and PR have a DW SRF
- Congress appropriates funding for the DWSRF
- EPA then awards capitalization grants to each state based on the results of the Drinking Water Infrastructure Needs Survey and Assessment
- Bulk of money goes into a revolving loan fund
- Provides loans and other authorized assistance to water systems for eligible infrastructure projects

www.efcnetwork.org

Smart Management for

Small Water Systems

ELIGIBILITY

Eligible Water Systems

- The Division of Drinking Water (DDW) provides oversight for two SRF
 Programs
 - Federal
 - State
- These programs, while similar, have some significant differences

Eligibility - State Program

- Limited to "Political Subdivisions/Entities"
 - Municipalities
 - Water Districts
 - Special Service Districts

Eligibility - Federal Program

- Publicly Owned Systems, Privately Owned Systems, or Non-profit, Noncommunity Systems
 - Municipalities, Improvement Districts, etc.
 - HOA's, "Mom & Pop" systems, etc.
 - Church Camps, Scout Camps, etc.

Eligible Projects

- Treatment
- Transmission and distribution
- Source
- Storage
- Consolidation
- Creation of new systems
- Green Projects
- Funding is not available for future development only
 - However, considering a reasonable amount of future growth is encouraged

Disadvantaged Communities

"Disadvantaged Communities" - a median adjusted gross income which is ≤ 80% of the State's median adjusted gross income; or where the established annual cost of drinking water service to the average residential user exceeds 1.75% of the median adjusted gross income

Lower Rates

 2016 interest rates of 1.5-2.5% - The most current Revenue Bond Buyer
Index (RBBI) is used as the base rate

- As of November 3, 2016 RBBI was 3.44%

- 2016 origination fee of 1%
 - Disadvantaged communities do not pay origination fee

Targeted to Small Systems

 A minimum of 15% of all dollars credited to the loan fund must provide loans to systems that serve fewer than 10,000 persons

Green Infrastructure Projects Reserve?

- Green Projects include:
 - Water efficiency, including meters
 - Energy efficiency

- Congress decides from year to year whether to include the Green Project Reserve as a requirement
 - In 2016, no green projects required
 - However, states are encouraged to include green projects to the extent possible

Principal Forgiveness

- Basically the same as a grant
- Must qualify as a Disadvantaged Community to be considered
 - Local MAGI is less than or equal to 80% of the State MAGI

or

Average water bill is greater than 1.75% of Local MAGI

IENTAL FINANCE CENTI

REQUIREMENTS RELATED TO FEDERAL SRF FUNDING

Terms of Loan

- Repayment must begin no later than one year after completion of the project
- 20 year term (after the completion of the project)
 - A disadvantaged community loan may have up to 30 years as long as the period of the loan does not exceed the expected design life of the project

Davis-Bacon Act Wage Rules

- Must use the most recent wage determination, found here:
 - <u>http://www.wdol.gov/dba.aspx</u>
- Select the appropriate state and county
- Select Construction Type "Heavy"
- Click "Search"
- Print the determination page and include it in project specifications and bid documents

American Iron and Steel Provision

- Requires iron and steel products in construction of projects be produced in the United States
- Waivers may be requested for an exception when necessary
- EPA Q&A document may be found here:
 - <u>https://www.epa.gov/cwsrf/american-iron-and-steel-requirement-guidance-andquestions-and-answers</u>
- EPA Training Material may be found here:
 - https://www.epa.gov/cwsrf/american-iron-and-steel-requirement-training-materials

Disadvantaged Business Enterprises (DBE)

- Typically Minority or Woman-Owned
- Must be given the opportunity to bid on any federally-funded project
- Assistance recipient must show a "good faith effort" to allow DBE's to bid
- Not required to hire DBE

Reporting

- 3 major areas for federal programming
 - DBE
 - American Iron & Steel
 - Davis-Bacon

Project Signage

- Required for federally funded projects
- Options
 - Standard Signs
 - Posters or flyers hung in a public place
 - Newspaper or periodical advertisement
 - Online "sign" on community webpage or social media
 - Press release

SRF FUNDING TIMELINES AND PROCESS

The Intended Use Plan (IUP)

- IUP describes how the state plans to use available funds, includes list of potential projects
- A draft IUP must be posted for public comment

ENTAL FINANCE CENTI

• Includes the Project Priority List ...

The Project Priority List

- Each application assigned priority points
- Systems whose projects have a high priority score have chance to be considered for financial assistance ahead of projects with lower scores
- Calculation is as follows:

Priority rating = (Average number of points received) X (Rate Factor) X (AGI Factor) Where: Rate Factor = (Average System Water Bill / Average State Water Bill) AGI Factor = (State Median AGI/ System Median AGI)

Drinking Water Board Financial Assistance Committee Application Submittal Schedule 2016

Application Cut-Off Date	SRF Packet Due	SRF Conference Call	DWB Meeting
11/09/2015	12/02/2015	12/09/2015	01/08/2016
01/04/2016	01/26/2016	02/03/2016	03/03/2016 (St. George)
03/14/2016	04/06/2016	04/13/2016	05/13/2016
05/09/2016	06/01/2016	06/08/2016	07/08/2016
06/30/2016	07/26/2016	08/03/2016	08/31/2016 (Layton)
09/26/2016	10/12/2016	10/19/2016	11/18/2016

The State Environmental Review Process (SERP) – Potential Outcomes

- CatEx Categorical Exclusion From Environmental Review
- EA Environmental Assessment
- FONSI Finding of No Significant Impact
- EIS Environmental Impact Statements
- ROD Record of Decision

The Bonding Process

- Public notice and public hearing are required
 - Public hearing typically held as part of City Council Meeting or other public body meeting

MENTAL FINANCE CENTI

- Parameters Resolution
- Bond Resolution

The Plan Review Process

- Project plans and specifications must be submitted to DDW for review and approval before going out for bid
- DDW has thirty days to respond
- Plan schedules accordingly
- DDW must receive a copy of the bid tabulation as well as the detailed bid for the chosen contractor

TIPS ON HOW TO SCORE HIGHER ON YOUR SRF APPLICATION

Capacity Assessment Worksheets for Public Water Systems

- Online at:
 - <u>http://www.deq.utah.gov/form</u> <u>s/water/dw/docs/2014/03Mar/</u> <u>pdf/e-capassworksheet.pdf</u>

The Technical Portion of your System

Please mark (_) the appropriate box: Yes, No, or Unknown for each section. Please try to determine the answer to every question. If a section or question does not apply to your system, please write NA for not applicable.

Water Supply and Existing Demands	Yes	No	Unknown
Do you know how much water you pump on an average day ?			
Amount			
Do you know how much water you pump on a peak day ?			
Amount			
Have you been able to provide adequate volumes of water during drought cycles ?			
Do you have an Emergency Response Plan that will allow you to meet system demand during a drought or shortage, such as the loss of the largest source ? <i>If Yes, please attach.</i>			
Do you have a contract to purchase water?		Γ	
If yes, with who ?			
Do you know the terms affecting your supply during drought conditions ?			
Sytem Maintenance			
Are locations, size, and type of mains and service lines detailed on records ?	-		-

NVIRONMENTAL FINANCE CENTER

Can You Sleep at Night?

Is your system self sufficient?

Operating Ratio

Are you able to cover your debt service after paying for your day to day operations?

If your customers stop paying their bills, how long can you maintain operations?

Can your system meet its short term obligations?

How much of your system's expected life has already run out?

Debt Service Coverage Ratio

Days Cash on Hand

> Current Ratio

Asset Depreciation

IRNTAL RINANCE CENT

Whiteboard Video: Financial Benchmarking for Water Utilities

http://www.waterrf.org/Pages/Projects.aspx?PID=4366

Quick Review of Key Financial Indicators

Operating Ratio

Current Ratio

Debt Service Coverage Ratio Days of Cash on Hand

Asset Depreciation

Is your system self-sufficient?

Operating Ratio

OPERATING REVENUES

DEPRECIATION ANNUAL COST OF WEAR AND TEAR ON THE SYSTEM

Read more: <u>http://efc.web.unc.edu/2015/02/27/operating-ratio/</u>

Are you able to cover your debt service after paying for your day to day operations?

Debt Service Coverage Ratio

OPERATING REVENUES - OPERATING EXPENSES (EXCLUDING DEPRECIATION)

PRINCIPAL INTEREST PAYMENTS ON LONG TERM DEBT

GREATER THAN 1.25

Read more: <u>http://efc.web.unc.edu/2015/04/23/debt-service-coverage-ratio/</u>

www.efcnetwork.org

Can your system meet its short term obligations?

Current Ratio

UNRESTRICTED CURRENT ASSETS EXCLUDING INVENTORIES AND PREPAID ITEMS

CURRENT LIABILITIES

Read more: http://efc.web.unc.edu/2015/10/01/key-indicator-current-ratio/

If your customers stop paying their bills, how long can you maintain operations?

Days Cash on Hand

UNRESTRICTED CASH AND INVESTMENTS

OPERATING EXPENSES EXCLUDING DEPRECIATION & AMORTIZATION / 365

Read more: <u>http://efc.web.unc.edu/2015/06/24/days-cash-on-hand/</u>

How much of your system's expected life has already run out?

Asset Depreciation

= Accumulated Depreciation Gross Plant and Equipment

Caveat: this indicator is only as accurate as your depreciation schedule, and even then historic pricing is likely to distort the results.

Where Do We Get Started?

• Local governments: audited financial statements

 Non-governments: balance sheets, shareholder reports, annual reports, etc.

STATEMENT OF NET ASSETS PROPRIETARY FUND JUNE 30, 2011			
	Water and Sewer		
Assets Current Assets:	Enterprise Fund		
Cash - openting	s 568.061 - (7)		
Accounts Receivable (Net)			
Protoid Insurance	5856 70		
Total Correct Asacta	640,203		
Noncurrent Assets:	640,000 C		
Restricted cash	177,208		
Capital assets	01,208		
Land	209.556		
Buildings	22.982		
improvements other than buildings	5,873,700 (9)		
Machinery and equipment	896.073		
Construction in programs	1,454,079		
Less: Accumulated depreciation	(2.883,225) - (8)		
Defened Charge	30,833		
Total noncurrent assets	5,781,215		
Total Assets	6,421,478		
Liabilities			
Current Linbilities:			
Accounts Payable	21,090		
Accrued Espenses	2,767		
Due to Other Funda	8,176		
Castorier Deposits	62,625		
Deferred Subsidy Revenue	460,005		
Carrent Portion of Long Term Debt	343,811 - 6		
Total Current Liabilities	398,474 - 0		
Noncurrent Liabilities: Compensated Absonses			
Revenue Bonds (Net of current partice)	15,605		
Note: Payable (Net of current portion)	233,357		
Total Noncurrent Liabilities	<u>646,873</u> 889,925		
Total Liabilities	1,788,399		
	1.198.127		
Fund Net assets			
rested in capital assets, net of related debt	4,355,133		
Restricted for debt service	114,583		
Unrestricted	163,363		
Fotal fund net assets	<u>\$ 4.633.079</u>		

Financial Health Checkup for Water Utilities

http://efc.sog.unc.edu or http://efcnetwork.org Find the most up-to-date version in Resources / Tools

Financial Health Checkup for Water Utilities

UNC ENVIRONMENTAL FINANCE CENTER leveloped by the Environmental Finance Center at the University of North Carolina, Chapell HI http://wfosing.uncerda

What does this tool do?

This tool assists in the assessment of the financial performance of a water (and/or wastewater) utility fund. Financial data readily available in annual financial statements are copied into this tool, which computes key financial indicators that measure a variety of important metrics, such as the ability to pay debt service. availability of cash to pay for operations and maintenance, the sufficiency of otherways generated, etc. Each metric is compared against targets that are specified by the user. The hool demonstrates the financial strengths and weaknesses of the utility fund in the past 5 years.

Features:

Simple data entry (uses data already reported in your audited financial statements) 5 financial performance indicators with explanations Set your own targets Assessment of last year's financial ratios, improvements since previous year, and five year trends Guided navigation through hyperlinked images

What are financial indicators?

Watch a whiteboard video explaining financial performance indicators in lay terms.

600

Excel[®]- based tool

Free to use

Created by the Environmental Finance Center at the University of North Carolina, Chapel Hill's School of Government

A resource for water systems from the EFCN's Smart Management for Small Water Systems project

funded under a cooperative agreement with the U.S. E.P.A.

Tip: when you first use this file after downloading from our website, click on "Enable Editing" at the top

Why Care About This?

 Funders and ratings agencies care about this

 As you think about the future needs of your system, you have to know where you are starting from

So....

• Now that we know where we are, let's decide where we are going...

 How do we estimate the future costs and revenues?

Two Related Concepts:

Asset Management & & Capital Planning

Working smarter not harder is the essence of Effective Management / Asset Management

Asset Management Helps You Have the Most Impact in Your System By Spending Your Limited Dollars in the Best Way Possible

Five Core Components of AM

Current State of the Assets

Level of Service

Criticality

Life Cycle Costing

Long-Term Funding

Current State of the Assets

- What do I own?
- Where are the assets?
- What condition are they in?
- How much useful life is remaining?
- What is the replacement value?

Level of Service

Asset Criticality

What is the probability or likelihood that a given asset will fail?

How do my assets fail?

What's the condition of my assets?

Asset Criticality

What is the consequence if the asset does fail?

What is the cost of the repair?

Are there legal consequences, environmental consequences, social consequences?

Are there redundant assets?

Asset Criticality

Probability of Failure

In Theory, there is an exact right time to replace an asset

Not possible to know the optimal time to replace every asset

So... need to use the concept of risk

Time

Life Cycle Costing & Risk

Low risk assets: run

afterwards

to failure and replace

High risk : replace assets early, before failure

Long Term Funding

- This is where capital planning comes in
- Once you figure out how to get the longest life out of your assets, plan to have the money you need to replace them when necessary
- More on this Asset Management Framework at:

https://www.env.nm.gov/dwb/assistance/d

ocuments/AssetManagementGuide.pdf

Long Term Capital Plan

 An official multi-year document that identifies and prioritizes capital projects, identifies funding sources, and sets timelines

Capital Improvement Program

- Identify regulatory deficiencies (discuss with regulatory agencies, look at proposed regulations, talk to consultants), in a 10-20 year window
- Identify growth needs, expansion

Capital Improvement Program

- Identify deferred maintenance problems or where current service is inadequate
- Prioritize based on need realizing that "hidden" infrastructure tends to be ignored

Capital Improvement Program -Timelines

 Use Asset Management Plan to plan for capital expenses in the long term (~20 years)

Capital Improvement Program -Timelines

 Create a Capital Improvement Plan with a narrower timeline (~5 years) in more detail. Specify the projects and accurate estimates of cost. Plan where money will come from.

Capital Improvement Program -Timelines

 Create a Capital Improvement Budget with an even narrower timeline (1 – 2 years) committing funds for the planned capital projects. Get it approved/adopted.

Example Capital Improvement Plan (CIP)

Project Name	F	lanning Y					
	FY 02	FY 03	FY 04	FY 05	FY 06	Future	Total
Water Supply & Treatment							
Water Treatment Objective							
Lime pumps and slakers	740						740
Chemical Enclosures		500					500
Filter 7-18 Control			330				330
Filter Gallery Rehab	1,140						1,140
High Service Pumps		1,500					1,500
Upgrade or Replace Reclaim System Drier	200						200
New Membrane Skids				5,700			5,700
Sodium Hypochlorite Plant	2,000						2,000
Additional Storage Tanks					5,000	3,300	8,300
Repair R/O Capacity		150					150
Filter Gallery Mech Parts	300						300
MMIS						150	150
VFDs - HSP		344					344
Membrane Replacement		1,600					1,600
Painting of Water Plant						3,000	3,000
Phase II Emergency Power Generator						1,500	1,500
Portable Generator - South Well Field				150			150
Repalcement of Fuel Tanks			170				170
Upgrade of Existing Control System @ WTP						580	580
) (stor Trastmant Tatal	1.1.1.1.1.1.1.mb.A.						
Water Treatment Total	::::::: : :4;380}	.::::::4;Q94)	::::: : \$UU	1:1:1:5;8503	<u>;;;;</u> ;\$;QQQ;	8,530	:::::28,354

Smart I

Where Can You Find the Prices?

- Call a vendor. Actually, call a few.
- Ask other systems
- Look at past expenses but adjust for increases in costs

Measures of Inflation

- Consumer Price Index (CPI)—measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services
- Construction Cost Index (CCI)—average prices for labor and key construction materials from 20 cities across the United States

Annual Changes to the Construction Cost Index and to CPI-U ("Inflation")

Data analyzed by the Environmental Finance Center at the University of North Carolina, Chapel Hill. Data Sources: Bureau of Labor Statistics, Engineering News-Record ENR.com, InflationData.com, USDA Natural Resources Conservation Services.

http://efc.web.unc.edu/2012/09/26/using-an-index-to-help-project-capital-costs-into-the-future/

Drive Down the CIP Cost

- Is it possible to
 - Eliminate projects?
 - Defer projects?
 - Repair or refurbish instead of replace?
 - Find a non-asset solution?
 - Find collaboration/partnerships alternatives with neighboring systems?
 - Improve balance of cash vs. debt-financed?
- Re-evaluate water demands of your customers. Many systems are now noticing that *total* demand is *decreasing* over time.

Reminder: Life Cycle Costing

• Purchase Price ≠ Total Price

Capital Investments are Just the Tip of the Iceberg...

www.efcnetwork.org

Source: Adapted from Steve Allbee, USEPA

Software: CUPSS (EPA)

UNC SCHOOL of GOVERNMENT

About the School | Courses and Resources | Library | MPA | Publications

Smart Management for VV Small Water Systems

www.efcnetwork.org

Created by the Environmental Finance Center at the UNC School of Government

IOL

ENVIRONMENTAL FINANCE CENTER

User-Friendly Capital Improvement Plan (C.I.P.) for Water & Wastewater Utilities Tool

Free, simplified CIP tool using only MS Excel, developed by the Environmental Finance Center at UNC.

Download the latest version at <u>http://efc.sog.unc.edu</u>. Find it in Resources / Tools.

Tool development was funded by the Public Water Supply Section of DWR/ NCDENR and partly by the USEPA.

What the Tool Does

Summarizes your utility's capital needs in the next 20 years, and estimates rate increases needed to fully fund the capital projects, based on debt and/or cash funding requirements

www.efcnetwork.org

Small Water System

"Full Cost Pricing"

- Operations & maintenance expenditures
- Taxes and accounting costs
- Contingencies for emergencies
- Principal and interest on long-term debt
- Reserves for capital improvement
- Source water protection

Rank Your Rate Setting Objectives

Elements of Rate Structure Designs

- 1. Customer classes/distinction
- 2. Billing period
- 3. Base charge
- 4. Consumption allowance included with base charge
- 5. Volumetric rate structure
- 6. (If applicable) Number of blocks, block sizes and rate differentials
- 7. (Optional) Drought Rates
- 8. Frequency of rate changes

How Rates and Usage Interact

Set rates based on projected water use

Raising rates lowers water use

Rule of thumb: water use declines ~2-6% as rates increase 10%

Frequency of Rate Changes

- Always review your rates annually (recommended)
- Review your financial health indicators annually, and then review your rates if any of the indicators reflect poor financing
- Perhaps less politically charged option: Raise rates each year automatically based on inflation

Water and Sewer Rates Analysis Model

Free, rate-setting tool using only MS Excel, developed by the Environmental Finance Center at UNC.

ENVIRONMENTAL FINANCE CENTER

http://efc.sog.unc.edu/reslib/item/water-sewer-rates-analysis-model

Data Input 1

										1.000
X	Desail and the second	als Desine March	Rate_A	nalysis-version2 - Microsoft Escel						
	Page Layout Pormulas De	ata Review View		-						() = (
Arial Arial	* 14 * A' A'	$\mathbb{P} = \mathbb{P} = \{\mathbb{P}^{n} \mid \mathbb{P}^{n}\}$	Wrap Text General *	Normal	2 Normal	Bad	Good	i= ix 🔳 I	Σ AutoSum *	° A
este	л <u>и</u> - <u>-</u> - <u>-</u> - А -	医医胃 法法 湖	Marga & Center - \$ - % + 3/2	Conditional Format Neutral	Calculation	Check Cell	Explanatory	nsert Delete Format	Fill · JCu Sort 8	R Find &
Clipboard to	Font D	Alignment	s Number s	Formatting * as Table *	Styles			Cells	Clear * Pilter · Editing	- Select -
Q3 • (*	J= 100	Anyment			20/102			600	Control	
	2- 200									
A A	B C D	E F	3 H I	J K L	MN	O P Q	R	S T	U	٧
1 Water and S	ewer Rates Analysis	s Model. Version 2.0	i	Data Input Color Explanatio	977					
2			White	Data to be entered, can be c	hanged		cubic feet to g	allons converter		
	s: Rates and Rate S			Automatically calucated data	; do not change!	100) cubic feet	= 748	gallons	
Input current rate and ac	count information in the dark g		ted Red	Important Results					gunono	
Rate Structure	cashflows from rate change		13 Rate Structure		2012	2013	21005 to \$11000	gallons converter		
7 Residential Rates			w Commercial Rates			News				
8 Water Base Rate			200 Water Base Rate			\$12.00	.00 /hundred cubic \$	set = \$1.34	/1,000 gallons	
Water:	EFC:	End:	Water:		ind:					
 Block Rate 1 (\$/1,000 Block Rate 2 (\$/1,000 	(al) If your utility has uniform rates, use the	sal/mo \$1.00 \$1 sal/mo \$2.00 \$2	25 Block Rate 1 (\$/1,000 gal 25 Block Rate 2 (\$/1,000 gal				ok sizes (state and end) i s in \$/1000 gallons	n gallons/month		
2 Block Rate 3 (\$/1,000	aai) input box for "Block	gal/mo \$3.00 \$3	25 Block Rate 3 (5/1,000 ge	the input box for 🛛 🛅	gal/mo \$3.00	\$3.25 Use the o	onverters above for conv	enting from cubic feet	units	
Block Rate 4 (\$/1,000	pal) EFC:		25 Block Rate 4 (\$/1,000 ga	EFC:		\$4.25		-		
Final Block Rate (\$/1,000	(al) Input Final Block Rate here regardless of the		25 Final Block Rate (\$/1,000 gal	Input Final Block Rate here regardless of the	\$5.00	\$5.25				
5 Sewer Base Rate	number of blocks your utility uses.	\$10.00 \$12	200 Sewer Base Rate	number of blocks your utility uses.	\$10.00	\$12.00				
Sever: Block Rate 1 (\$/1.000	al) If your utility has	al/mo \$1.00 \$1	25 Sever: 25 Block Rate 1 (\$/1,000 gal		sal/mo \$1.00	\$1.25				
Block Rate 2 (\$/1,000	[33] uniform rates, use the	asi/mo \$2.00 \$2	25 Block Rate 2 (\$/1,000 ga	uniform rates, use		\$2.25				
D Block Rate 3 (\$/1,000)	al) input box for "Block	pal/mo \$3.00 \$3	25 Block Rate 3 (5/1.000 get	the input box for 🛛 📆	gal/mo \$3.00	\$3.25				
1 Block Rate 4 (\$/1,000 2 Final Block Rate (\$/1,000	pal) EFC: (al) Input Final Block Rate		25 Block Rate 4 (\$/1,000 gal 25 Final Block Rate (\$/1,000 gal	EFC: Input Final Block Rate		\$4.25 \$5.25				
3	here regardless of the			here regardless of the	43.04	10.10				
5 Rate Structure	number of blocks your utility uses.		13 Number	number of blocks your utility uses.	2012 0	irowth				
6 Irrigation Rates		_	w of Accounts	· · · · · ·		Rate:				
7 Irrigation Base Rate			00 Residential Wate		3000	0.50%				
28 Impation:	EFC:	End:	Residential Sewe	r	2500	0.50%				
 Block Rate 1 (\$/1,000 Block Rate 2 (\$/1,000 	al) uniform rates, use the	gal/mo \$3.50 \$3	50 Commercial Wate	r	200	0.50%				
31 Block Rate 3 (\$/1,000	al) input box for "Block	gaVmo	Commerical Seve			0.50%				
2 Block Rate 4 (\$/1,000 3 Final Block Rate (\$/1,000	al) EFC: Input Final Block Rate	pal/mo	Inigation Wate		3000	0.50%				
14	here regardless of the		Ingation Wate		2000					
5 Tap Fees	number of blocks your utility uses.		13 Miscellaneous		2012					
7 Taprees			aw Wiscellaneous		Existing					
B Average Sewer Tap		\$2,000.00 \$2,4	0.00 Uncollected Bill		8.0%					
9 Average Water Tap		\$500.00 \$60 \$2,200.00 \$2.5	0.00 Non-revenue Wate	r	15.0%					
40 Average Irrigation Tap	00	\$2,200.00 \$2,5								
42			ter at The University of North Carolina, Ch							
43	Funded by the NC (Department of Environment	and Natural Resources and the U.S. Envir	nmental Protection Agency						
45										
		Charts / Fund Balance - Ex	sting Rates 📝 Fund Balance - New Rates	/ !	14					
	· · · · · · · · · · · · · · · · · · ·							101	III 100%	0
Ready Calculate Stroll Lock		· · · · · · · · · · · · · · · · · · ·							115 14 1	
Ready Calculate Stroll Lock		network.	ora					1001	JINC	

Water and Sewer Rates Analysis Model - Results

Results are Excel Spreadsheet with:

 The Fund Balance Under Existing Rates
 The Fund Balance Under Proposed Rates
 Projected for the next 20 years

http://www.deq.utah.gov/FeesGrants/funds/ drinkingwater/federal_srf.htm

Tour of Utah DEQ's website

Contact Information

- Michael Grange: Construction Assistance **Section Manager**
- mgrange@utah.gov
- 801-536-0069

Ken Bousfield: Utah Division of Drinking Water kbousfield@utah.gov

Polling Question 4

Would you like to subscribe to the Environmental Finance Center blog? *(choose one)*

- Yes
- No

Polling Question 5 and Evaluation Survey Link

Are you interested in receiving in-depth technical assistance for your small water system? *(choose one)*

- Yes
- No
- Would Like More Information About This

QUESTIONS

Slides and a manual on this material are coming to: http://efcnetwork.org/events/webinar-navigate-utahs-srf-program/

Thank You!

And please let us know if you have any questions.

Stacey Isaac Berahzer

UNC Environmental Finance Center

berahzer@unc.edu

Skype: StaceyBerahzer

Twitter: https://twitter.com/staceyib_enviro

