

Utility Rate Setting & Financial Planning Training

Stacey Isaac Berahzer Newton, KS April 30, 2015

This program is made possible under a cooperative agreement with EPA.

Long Term Capital Planning

Uh oh! How Do You Pay for This?

Emergency repair

VS.

Preventative rehab./ replacement (capital planning)

Session Objectives

 Learn about two aspects of long-term system planning: asset management and capital planning

Figure out how to pay for the future needs

In the Old Days...

 Water systems took advantage of the federal government's ambitious construction grants program of the 1970s and 1980s

Everybody loved their "free" money

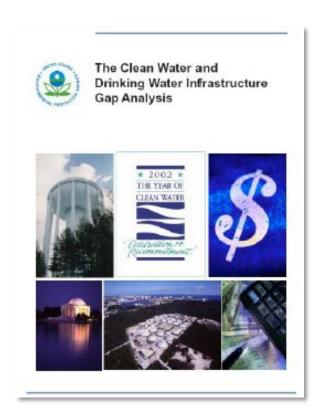
Capital Finance Today

 The money never really was "free"—it came from tax dollars

 Today, the financial burden has been shifted away from federal and state tax dollars (grants) to funds raised by the water system itself (customer sales and loans). For example...

Grants Have Been Replaced by Loans

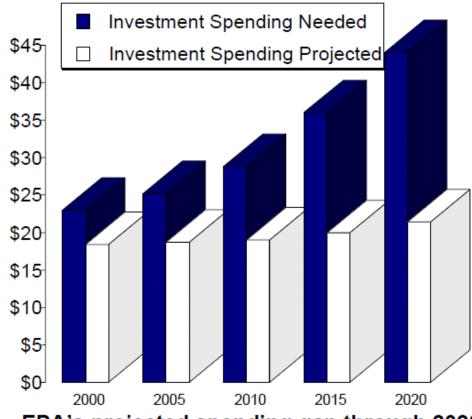
EPA Wastewater Spending by Type (billions of dollars)



Capital Finance Today

- In other words, you pay
- The harsh reality is that water and wastewater infrastructure is expensive, regardless of the size of your system.
 Smaller or poorer systems will likely have a hard time paying for capital improvements

Nationwide, We Are Behind Where We Should Be


EPA Report on "Infrastructure Gap":

http://www.epa.gov/ogwdw/gapreport.pdf

And That Gap Is Growing

Every Year

EPA's projected spending gap through 2020

Poor Investment -> Poor Infrastructure

REPORT CARD Ports C Public Parks C-Aviation D Rail C+ Bridges C+ Roads D Dams D Schools D **Drinking Water** Solid Waste B. Energy D+ Transit D Hazardous Waste Wastewater **D** Inland Waterways D-Levees D-

http://www.infrastructurereportcard.org/

ASCE Gives Drinking Water a D

 Bad news: ... much of our drinking water infrastructure is nearing the end of its useful life. ... estimated 240,000 water main breaks per year in the US. Assuming every pipe would need to be replaced, the cost ... could reach more than \$1 trillion, according to AWWA.

ASCE Gives Drinking Water a D

 Good news: The quality of drinking water in the United States remains universally high. Even though pipes and mains are frequently more than 100 years old and in need of replacement, outbreaks of disease attributable to drinking water are rare. (ASCE)

Two Related Concepts:

Asset Management & Capital Planning

Asset Management

- 1. We do it!
- 2. Heard of it and might be interested
- 3. Isn't that difficult software stuff?
- 4. What now?

Working smarter not harder is the essence of Effective Management / Asset Management

Asset Management
Helps You Have the
Most Impact in Your
System By Spending
Your Limited Dollars in
the Best Way Possible

What you want to do....

Replace all the assets

New tank
New pipe
New pump
New filter

\$5 Million

Second Choice: \$3 M

Replace Elected Still Say N ecision-Makers Still & Pump Some of the Asset

Now What?

Repair and Rehabilitate

Rehab Option: \$1 M

Rehab Assets

Reduced risk almost as low as new assets for 1/5 the cost

What does this type of analysis take?

- Nothing more than following a systematic approach for managing the assets
- 5 core components of Asset Management

Five Core Components of AM

Current State of the Assets

Level of Service

Criticality

Life Cycle Costing

Long-Term Funding

Current State of the Assets

- What do I own?
- Where are the assets?
- What condition are they in?
- How much useful life is remaining?
- What is the replacement value?

Level of Service

Involve Customers

Measurable

Goals: Internal I

and External

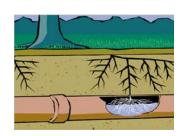
Track Progress

Towards

Meeting Goals

Involve Staff

What would my customers want?



Asset Criticality

What is the probability or likelihood that a given asset will fail?

How do my assets fail?

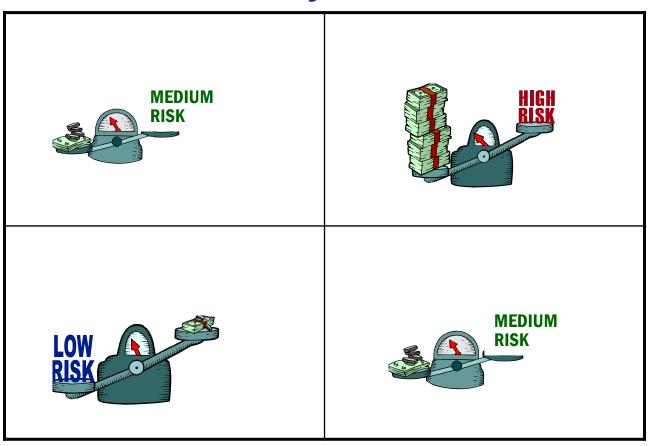
What's the condition of my assets?

Asset Criticality

What is the consequence if the asset does fail?

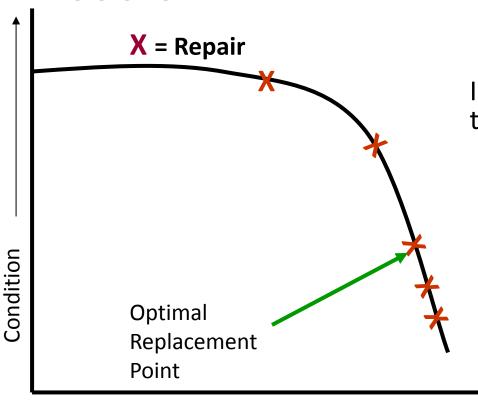
Are there legal consequences, environmental consequences, social consequences?

Are there redundant assets?



Asset Criticality

Consequence of Failure

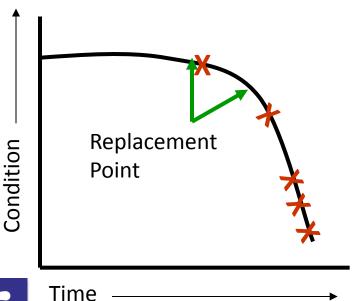

Which category of assets do I care the most about? The least?

Probability of Failure

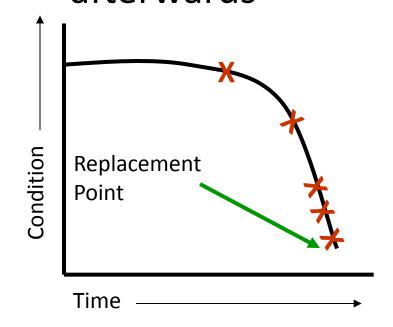
Life Cycle Costing: Replacement of Assets

In Theory, there is an exact right time to replace an asset

Not possible to know the optimal time to replace every asset


So... need to use the concept of risk

Time



Life Cycle Costing & Risk

High risk: replace assets early, before failure

Low risk assets: run to failure and replace afterwards

Long Term Funding

This is where capital planning comes in

 Once you figure out how to get the longest life out of your assets, plan to have the money you need to replace them when necessary

Comments from a Few Practitioners

Jim Smith, City of Louisville, KY

Shawn McLean, City of Somersworth, NH

Capital Planning

- 1. We do it!
- 2. Heard of it and might implement
- 3. Heard of it but not interested so far
- 4. What now?

Long Term Capital Planning

This is strongly related to asset management

 An official multi-year document that identifies and prioritizes capital projects, identifies funding sources, and sets timelines

Capital Improvement Program

- Identify regulatory deficiencies (discuss with regulatory agencies, look at proposed regulations, talk to consultants), in a 10-20 year window
- Identify growth needs, expansion

Capital Improvement Program

- Identify deferred maintenance problems or where current service is inadequate
- Prioritize based on need realizing that "hidden" infrastructure tends to be ignored

Capital Improvement Program - Timelines

 Use Asset Management Plan to plan for capital expenses in the long term (~20 years)

Capital Improvement Program - Timelines

 Create a Capital Improvement Plan with a narrower timeline (~5 years) in more detail. Specify the projects and accurate estimates of cost. Plan where money will come from.

Capital Improvement Program - Timelines

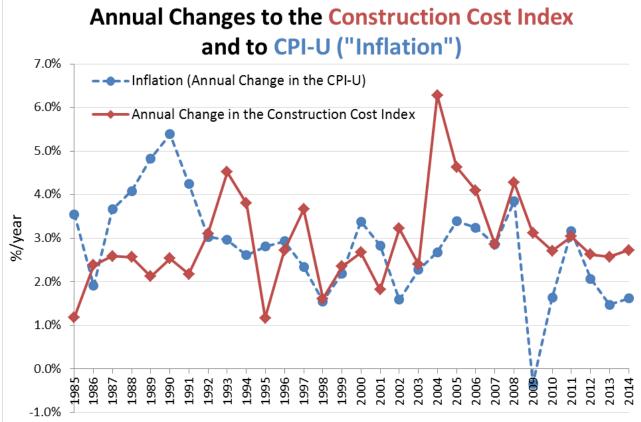
Create a Capital Improvement
 Budget with an even narrower timeline
 (1 – 2 years) committing funds for the planned capital projects. Get it approved/adopted.

Example Capital Improvement Plan (CIP)

Project Name	Planning Years (Values in 000s)						
	FY 02	FY 03	FY 04	FY 05	FY 06	Future	Total
Water Supply & Treatment							
Water Treatment Objective							
Lime pumps and slakers	740						740
Chemical Enclosures		500					500
Filter 7-18 Control			330				330
Filter Gallery Rehab	1,140						1,140
High Service Pumps		1,500					1,500
Upgrade or Replace Reclaim System Drier	200						200
New Membrane Skids				5,700			5,700
Sodium Hypochlorite Plant	2,000						2,000
Additional Storage Tanks					5,000	3,300	
Repair R/O Capacity		150					150
Filter Gallery Mech Parts	300						300
MMIS						150	150
VFDs - HSP		344					344
Membrane Replacement		1,600					1,600
Painting of Water Plant						3,000	3,000
Phase II Emergency Power Generator						1,500	1,500
Portable Generator - South Well Field				150			150
Repalcement of Fuel Tanks			170				170
Upgrade of Existing Control System @ WTP						580	580
	* . * . * . * a * a * = A .	. 1 . 1 . 1 a 1 a table No.	. ' . ' . ' . ' es b A				*.*.***
Water Treatment Total	:::::::::::::::::::::::4;380 <u>:</u> :	4,094	::::::::::5Q0;	:::::5;850 <u>:</u>	:::::: 5 ;000:	8,530	[::::28, 35 /

Where Can You Find the Prices?

- Call a vendor. Actually, call a few.
- Ask other systems
- Look at past expenses but adjust for increases in costs



Measures of Inflation

- Consumer Price Index (CPI)—measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services
- Construction Cost Index (CCI)—average prices for labor and key construction materials from 20 cities across the United States

Data analyzed by the Environmental Finance Center at the University of North Carolina, Chapel Hill. Data Sources: Bureau of Labor Statistics, Engineering News-Record ENR.com, InflationData.com, USDA Natural Resources Conservation Services.

http://efc.web.unc.edu/2012/09/26/using-an-index-to-help-project-capital-costs-into-the-future/

Drive Down the CIP Cost

- Is it possible to
 - Eliminate projects?
 - Defer projects?
 - Repair or refurbish instead of replace?
 - Find a non-asset solution?
 - Find collaboration/partnerships alternatives with neighboring systems?
 - Improve balance of cash vs. debt-financed?
- Re-evaluate water demands of your customers. Many systems are now noticing that total demand is decreasing over time.

The Debt Market

Why Borrow?

 Water infrastructure has a long useful life. You may wish to amortize the loan over the life of the equipment so that the people who benefit from the system pay for it

When You Need Cash Now: The Debt Market

 Lenders will look at your creditworthiness, your ability to repay the debt, in determining whether to loan to you and your interest rate

The Debt Market

Two types—Loans and Bonds

- Loans are universally available

 Bonds are typically only available to large systems with significant revenues and managerial capacity

Loans

Typically from a bank

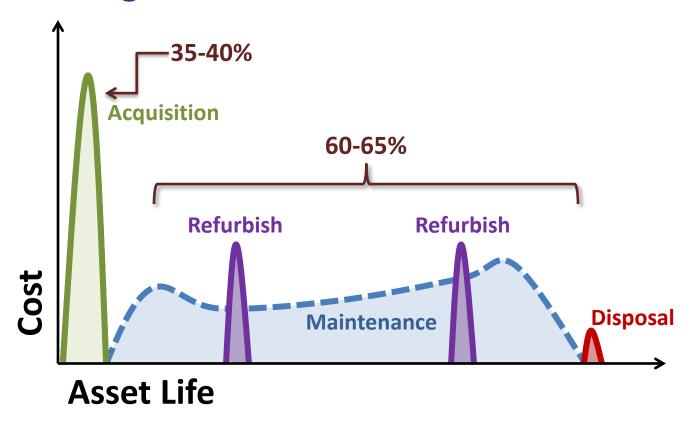
 Can be from a government-sponsored program such as the Drinking Water State Revolving Fund

Bonds

 A written promise to repay borrowed money (on a definite schedule and usually at a fixed rate of interest for the life of the bond)

- Different types exist:
 - General Obligation (GO)
 - Revenue

Source: bettermondays.com



Reminder: Life Cycle Costing

Purchase Price ≠ Total Price

Capital Investments are Just the Tip of the Iceberg...

Source: Adapted from Steve Allbee, USEPA

Resource Webpage for Capital **Planning**

UNC SCHOOL of GOVERNMENT

About the School | Courses and Resources | Library | MPA | Publications

Q search this site

Programs

Mission Statement

We work to enhance the ability of governments and other organizations to provide environmental programs and services in fair, effective and financially sustainable ways.

Project Tools

User-friendly Capital Improvement Plan (CIP) Tool for Water & **Wastewater Utilities**

Small Water Systems

Calculator, 03/20/2014 (MS Excel, 802 Kb)

projects and this tool will

project your fund balance (revenues, expenses and reserves), and necessary rate increases for the next 20 years, and more!

What to Include in your Capital Plan:

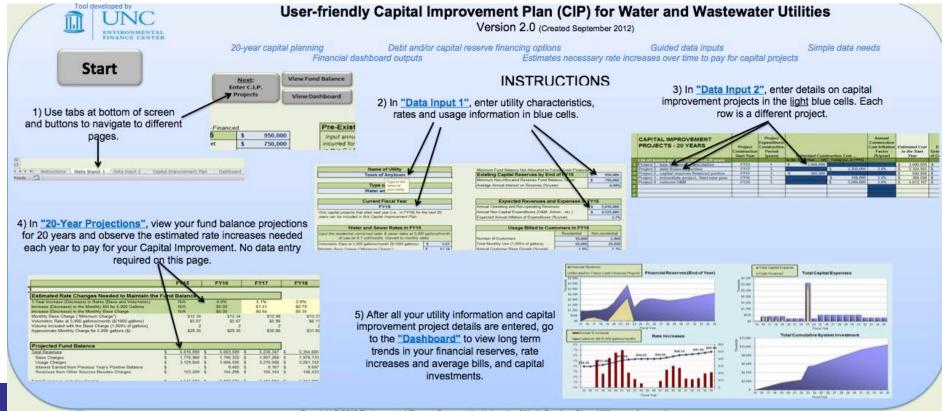
PROJECT CAPITAL PLANNING AND WASTEWATER

This project, p Support project Department of together many water and was creation of a C Management P

Blog Post on "Using an Index to I Future"

"What to Include in Your Capital Plan: A Reference Guide for NC Water and Wastewater Utilities" Last updated: February 2011 capital plan Date of documentation of capital plan Ø \square Description of systems Ø \square Ø Ø \square Existing capacity and demand \square ◩ Description of customers Inventory of existing assets (details on Ø Ø ◩ Project-specific details (complete for Ø Ø \square Ø Ø each project in every year) Ø Ø \mathbf{Z} Ø year in time period) Ø \mathbf{Z} Ø Ø Ø Updating the capital plan Ø Ties or links to other studies

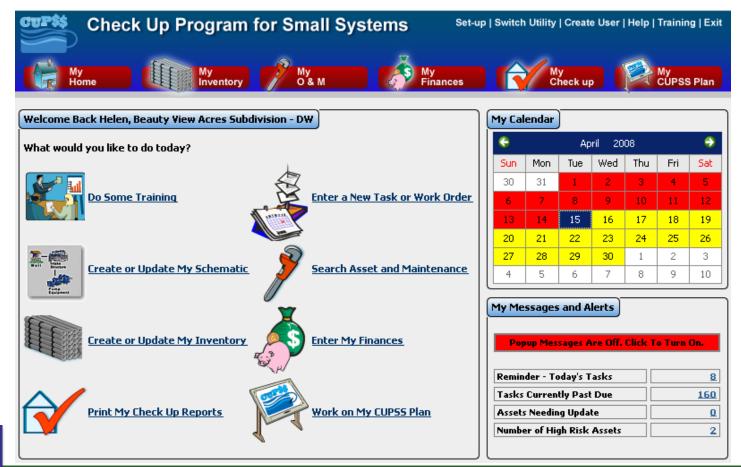
For updates and to view details in each category, go to http://www.efc.unc.edu/projects/capitalplanning.html Created by the Environmental Finance Center at the UNC School of Governmental



EFC C.I.P. Tool

http://efc.sog.unc.edu/

Free, simplified CIP tool using only MS Excel (EFC @ UNC)



Software: CUPSS (EPA)

http://www.epa.gov/cupss/

